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Abstract

One of the main challenges for end-to-end speech translation is

data scarcity. We leverage pseudo-labels generated from un-

labeled audio by a cascade and an end-to-end speech trans-

lation model. This provides 8.3 and 5.7 BLEU gains over a

strong semi-supervised baseline on the MuST-C English-French

and English-German datasets, reaching state-of-the art perfor-

mance. The effect of the quality of the pseudo-labels is in-

vestigated. Our approach is shown to be more effective than

simply pre-training the encoder on the speech recognition task.

Finally, we demonstrate the effectiveness of self-training by di-

rectly generating pseudo-labels with an end-to-end model in-

stead of a cascade model.

Index Terms: end-to-end speech translation, self-training.

1. Introduction

Speech translation (ST) systems convert input audio in a lan-

guage into text translations in another language. Compared with

their cascade counterpart, end-to-end models have lower infer-

ence latency, are smaller and are less susceptible to error com-

pounding. However, their main disadvantage comes from the

lack of supervised training data.

Data scarcity has been addressed in previous work with data

augmentation [1, 2], multi-task training [3, 4], pre-training [5,

6] or multilingual speech translation [7, 8, 9]. In this paper,

we propose to revisit self-training [10] in the context of speech

translation. Labels are automatically generated from unlabeled

audio data either via a strong speech recognition (ASR) sys-

tem followed by a strong machine translation (MT) system, i.e.,

a cascade model, or via an end-to-end model. An end-to-end

speech translation model is then trained on the resulting data.

[11] demonstrate the effectiveness of self-training for ma-

chine translation and summarization. They also provide insights

into its success and further improve vanilla self-training by in-

troducing noise in the unlabeled data. [12] and [13] also lever-

age pseudo-labeling on the LIBRILIGHT dataset [14] to improve

the performance of an end-to-end ASR system. Similar to this

work, additional knowledge (i.e., additional monolingual data

to train the language model) is leveraged to generate the pseudo-

labels. [15] also explore pseudo-labeling (both knowledge dis-

tillation and self-training) at scale in the domain of computer

vision. [1] demonstrate how to improve the performance of

an end-to-end speech translation system by generating pseudo-

labels from unlabeled audio via a cascade system. In contrast,

we provide more insights on the conditions under which this

method works, furthermore, we demonstrate how to generate

pseudo-labels with an end-to-end system, which greatly sim-

plifies model building, finally, we conduct experimentation on

open benchmarks for reproducibility. [16] also leverage addi-

tional ASR and MT resources to improve end-to-end speech

translation with a meta-learning algorithm. Our approach aims

Table 1: Open and FB Video dataset statistics, reported after

filtering for too long or too short input.

Domain Language Dataset # utterances # hours

Open

En-Fr

MuST-C 275k 479

dev 1412 2.6

tst-COMMON 2632 4.2

En-De

MuST-C 230k 395

dev 1423 2.5

tst-COMMON 2641 4.1

En
LIBRISPEECH 281k 960

LIBRILIGHT 15.8M 56k

FBVideos

En-Fr

train 20.7 30k

dev 925 6.3

test 3909 24.3

En-Es

train 20.6M 30k

dev 935 6.4

test 3915 24.3

En unlabeled 32.2M 255k

at simplifying model building by reusing either off-the-shelf

ASR and MT systems or an end-to-end speech translation for

pseudo-labeling and obtains state-of-the-art results.

Our method is first shown to be effective in a low resource

setting (§3.1). On a higher resource setup, improvements are

obtained after fine-tuning on the baseline data and by training

larger models (§3.2). Since pseudo-labeling enables the training

of larger architectures, scaling up the size of ST models is inves-

tigated next (§3.3). By doing so, we obtain large improvements

over a strong semi-supervised baseline across three language

pairs and two domains and reach state-of-the-art performance

on the MuST-C English-French and English-German dataset.

Ablation studies are then carried out. Our method is shown to

be more effective than pre-training the encoder on the ASR task

(§4.1). We also study the effect of the quality of the pseudo-

labels on the low resource setting (§4.2). Finally, replacing the

cascade model with an end-to-end model for pseudo-labeling is

investigated (§4.3).

2. Experimental Setup

2.1. Data

Experiments are conducted with both open and proprietary data.

Open data is used for reproducibility purposes and to conduct

more detailed ablations while proprietary data, comprised of

public Facebook (FB) videos, is used to verify that our methods

work at large scale. Open data includes the English-German and

English-French portions of MuST-C [17], LIBRISPEECH [18]

(LS) transcripts with automatic translations for a higher re-

source baseline and LIBRILIGHT (LL) to provide English un-

http://arxiv.org/abs/2006.02490v1


labeled audio. Different amounts of English unlabeled data are

randomly sampled and reused for all experiments. Three lan-

guage pairs, English-German (En-De), English-French (En-Fr)

and English-Spanish (En-Es) are studied. Dataset statistics are

summarized in Table 1.

2.2. Speech Translation Models

Models take log-mel filterbank features, computed with a 10ms

window shift, as input. On FB Video data, features have 40 di-

mensions and a window size of 16ms, and utterances of more

than 6000 frames are removed. On open data, features have 80

dimensions and a window size of 25ms, and utterances with

more than 4000 frames, less than 20 frames, or more than 256

tokens are removed. The translated text vocabulary is a uni-

gram model with size 10,000 built with the SentencePiece [19].

Note that a separate vocabulary is rebuilt for each data condi-

tion and that the model is directly built on raw data without

pre-tokenization.

We investigate our proposed method with a relatively small

LSTM architecture and a large Transformer architecture [20].

The LSTM architecture consists of a speech encoder with non-

linear layers followed by convolutional layers and bidirectional

LSTM layers, and a custom LSTM decoder [2, 4]. The Trans-

former architecture, VGGTRANSFORMER, is an adaptation of

Transformer to the ASR task [21]. Two architectures, VGGT,

with 14 encoder layers and 4 decoder layers, and VGGTLARGE,

with 20 encoder layers and 10 decoder layers are used in exper-

iments.

Training uses the Adam optimizer [22] with a learning rate

of 0.001 for the LSTM architecture and 0.0001 for the VG-

GTRANSFORMER architecture. The LSTM architecture has a

fixed learning rate schedule while the VGGTRANSFORMER ar-

chitecture uses the original Transformer learning rate sched-

ule [20]. Mini-batches have an effective size of 384,000 frames.

Models are trained until convergence or up to 800k updates.

At inference time, we use beam search with beam size 20,

including for pseudo-label generation. Case-sensitive detok-

enized BLEU is computed with SacreBLEU [23].

2.3. Speech Recognition Models

All the models take 80-channel log-mel filterbank features as

input and are trained end-to-end with the Connectionist Tem-

poral Classification (CTC) criterion [24]. The target vocabu-

lary is a wordpiece model [25] with size 10,000. Models are

all trained in the wav2letter++ framework [26] using either the

LIBRISPEECH dataset or FB Videos.

Model trained on full LS: We use the Transformer model from

[12] that works best on the LIBRISPEECH dataset1. Specifically,

there are 6 layers of 1-D convolutions with kernel width 3 as

front-end followed by 24 4-head Transformer blocks with self-

attention dimension 1024. The 2nd, 4th and the last convolu-

tions in the front-end have stride 2, so the overall sub-sampling

of the model is 8.

Model trained on LS 100h: We use a similar model as for full

LS. In order to obtain better performance with a small amount

of training data, we use 24 4-head Transformer blocks with self-

attention dimension 768 in the middle.

Model trained on FB Videos: The model is mainly built

upon Time-Depth Separable Convolution (TDS) [27] blocks.

It is composed of one 2-D convolution layer and two fully-

1github.com/facebookresearch/wav2letter/tree/

master/recipes/models/sota/2019.

Table 2: Number of parameters for each model architecture.

Task Model # Parameters

ST

LSTM 13.5M

VGGT 260.0M

VGGTLARGE 435.0M

ASR

Transformer 1024 339.9M

Transformer 768 204.7M

TDS 292.0M

MT

En-Es FB Video 320.1M

En-Fr FB Video 300.6M

En-De [29] 209.9M

En-Fr [29] 221.9M

connected layers with ReLU, LayerNorm and residual connec-

tions in between. Specifically, the model has 4 groups of TDS

blocks with a 1-D convolutions at the beginning of each group

as transitions. Similarly, the first 3 convolutions have stride 2 so

as to reach the same sub-sampling rate of 8. There are 2, 2, 5,

and 8 TDS blocks in each group, containing 16, 16, 24, and 32

channels, respectively. Following [12], we also apply a channel

increasing factor F = 2 in each TDS block.

Language model: A language model (LM) is integrated in the

beam-search decoder to generate final transcriptions together

with the acoustic models. In our experiments, we use 4-gram

LMs trained with KenLM toolkit [28]. The LM used for the

FB Videos is trained on the transcriptions, while the one for

the LIBRISPEECH dataset is trained on its official LM corpus

excluding books containing the transcriptions of LIBRILIGHT

dataset audios. The latter LM is prepared in [12].

After the acoustic models converged on the labeled data,

we tune the beam-search decoder parameters on the validation

set. Specifically, the decoder consumes the posterior from the

acoustic model, and runs a beam search through with LM to

generate the best path, with beam size 300 for the small Trans-

former (768) and 500 for the large Transformer (1024).

2.4. Machine Translation Models

All MT models use a Transformer [20] architecture. The model

for FB Videos uses 6 encoder layers, encoder embedding di-

mension of 1024, encoder feed-forward network (FFN) dimen-

sion of 2048, 16 attention heads, 2 decoder layers, decoder em-

bedding dimension of 512, decoder FFN dimension of 1024,

dropout of 0.2, and label smoothing of 0.1. A bottleneck linear

layer with dimension 128 is inserted prior to the softmax over

the target vocabulary and the decoder is an average attention

network [30]. The final model is an ensemble of size 3 obtained

from 3 training runs started with different random seeds, where

for each training runs, the last 10 checkpoints are averaged. The

original Transformer optimizer settings are used, with an initial

learning rate of 0.0007 and an effective batch size of 64,000 to-

kens. The models are trained on 100M sentence pairs from the

web, news and social media domain until convergence. In in-

ference, hypotheses are generated with beam search with beam

size 2. LIBRISPEECH transcripts and LIBRILIGHT automatic

transcripts are translated with pre-trained2 English-French and

English-German models [29], with beam size 5. Model sizes

are summarized in Table 2.

2github.com/pytorch/fairseq/tree/master/

examples/translation

github.com/facebookresearch/wav2letter/tree/master/recipes/models/sota/2019
github.com/facebookresearch/wav2letter/tree/master/recipes/models/sota/2019
github.com/pytorch/fairseq/tree/master/examples/translation
github.com/pytorch/fairseq/tree/master/examples/translation


3. Results

3.1. Adding LIBRILIGHT pseudo-labels

We first study the effect of simply adding pseudo-labels to the

baseline training data and retraining with the LSTM model,

where the baseline is either lower resource (MuST-C) or higher

resource (MuST-C + LS). In Figure 1, with this simple method,

the low resource baseline can be improved by up to 2.4 BLEU

on the En-De MuST-C dev set. Above a certain amount, adding

unlabeled data degrades performance. However, the higher re-

source baseline is not improved by simply adding unlabeled

data. Next, our focus is on improving the higher resource base-

line and on leveraging larger amounts of unlabeled data.
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Figure 1: Results obtained with additional LIBRILIGHT (LL)

data and the LSTM architecture on the En-De MuST-C dev set.

3.2. Improving a High-Resource Baseline

In Figure 2, the higher resource baseline can be improved upon

by fine-tuning3 the LSTM model on the baseline data (MuST-

C + LS) and by training (and fine-tuning) VGGT. We obtain

up to 24.7 BLEU, i.e., a 5.5 BLEU gain over the high resource

baseline. Note that training the VGGT model on the baseline

data does not converge and yields only 3.7 BLEU.
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Figure 2: Improving the higher resource MuST-C + LS baseline

by fine-tuning the LSTM model and training a larger architec-

ture, VGGT, on the En-De MuST-C dev set.

3.3. Scaling Model Size

In §3.2, substantial improvements over the baseline were ob-

tained by training a larger model. In Table 3, the capacity of

the model is further increased in order to verify to what extent

3Optimizer parameters are not reset.

Table 3: Results obtained on the En-De MuST-C dev set when

increasing the model size. Results are reported after fine-tuning.

Data VGGT VggTLarge

MuST-C + LS + 17,607h LL 23.8 23.7

MuST-C + LS + 35,217h LL 24.6 25.6

pseudo-labels can benefit training. When adding 17,607 h of

unlabeled data, VGGT and VGGTLARGE obtain similar per-

formance but with 35,217 h of additional data, VGGTLARGE

obtains 1 BLEU improvement on the En-De MuST-C dev set.

3.4. Main Results

We now validate our findings on three languages and two do-

mains. In the En-Fr and En-Es FB Video setting, different

amounts of unlabeled data are added to the baseline data, then

VGGT is retrained and fine-tuned. Figure 3 confirms earlier

conclusions that fine-tuning is necessary to obtain improve-

ments over a strong high-resource baseline. We obtain up to 1.2

and 1.0 BLEU gains on the En-Fr and En-Es dev sets, respec-

tively. Final results on the test sets on three language pairs and
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Figure 3: Effectiveneness of pseudo-labeling on FB Videos for

En-Fr and En-Es. Results are reported on the dev set.

two domains are summarized in Table 4. On the En-Fr MuST-C

tst-COMMON dataset, we obtain 8.3 BLEU improvements over

the strong MuST-C + LS baseline and improve state-of-the-art

from [16] by 0.45 BLEU. On the En-De MusT-C tst-COMMON

dataset, we obtain 5.7 BLEU improvements over the MusT-C +

LS baseline and improve the state-of-the-art by 3.1 BLEU. Fi-

nally, we verify that our method works with a very large-scale

FB video baseline by obtaining 1.3 and 1.4 BLEU gains on the

FB Video En-Fr and En-Es test sets, respectively.

4. Ablation Studies

4.1. Pseudo-Labeling vs. ASR Encoder Pre-training

In §3.2, pseudo-labels enable training much larger architec-

tures that are otherwise difficult to train. In this section, we

investigate whether this regularization effect is simply due to

better pre-training of the encoder. To verify this, the VGGT

architecture is first trained on the ASR task exactly as in the

ST task, then the encoder is initialize with the parameters ob-

tained in ASR training and the same model is trained on the ST

task. Data conditions include the high-resource baseline and the

baseline augmented with 3523 hours and 17,607 hours from



Table 4: Leveraging unlabeled audio on 3 language pairs and

2 domains. Results are reported on the MuST-C tst-COMMON

sets and the FB Video test sets.

Language Data Model BLEU

En-Fr

MuST-C
LSTM

24.8

MuST-C + LS 26.2

MuST-C + LS
VGGT

23.9

+ 35,217h LL + fine-tuning 34.5

State-of-the-art baseline [16] 34.05

En-De

MuST-C
LSTM

15.6

MuST-C + LS 19.5

MuST-C + LS
VGGT

3.5

+ 35,217h LL + fine-tuning 24.8

+ 35,217h LL + fine-tuning VGGTLARGE 25.2

State-of-the-art baseline [16] 22.11

En-Fr
(FB Videos)

baseline
VGGT

20.3

+ 96k h unlabeled + fine-tuning 21.6

En-Es
(FB Videos)

baseline
VGGT

18.5

+ 96k h unlabeled + fine-tuning 19.9

Table 5: Comparing self-training and pre-training the encoder

on the ASR task. Results are reported on the En-De MuST-C

dev set after fine-tuning.

Data
Encoder Pre-training Pseudo-Labeling

BLEU (WER) BLEU

MuST-C + LS 19.8 (25.2) 3.7

+ 3523 h LL 20.8 (22.7) 21.7

+ 17,607 h LL 21.0 (40.3) 23.9

LIBRILIGHT. Results are reported in Table 5. The word er-

ror rate (WER) obtained on the ASR task4 is also reported for

the encoder pre-training method. Except in the baseline setting,

pseudo-labeling outperforms encoder pre-training, by up to 2.9

BLEU. This highlights the importance of both encoder and de-

coder pre-training.

4.2. Quality of Pseudo-Labels

In this section, the effect of the quality of pseudo-labels is in-

vestigated. Automatic transcripts are generated either with the

ASR model trained on the full LIBRISPEECH dataset or on a

100 hour subset, then translated with the same translation sys-

tem. The two models obtain 7.3 and 27.7 WER on the LIB-

RISPEECH dev-other set. The LSTM speech translation

model is then retrained on both types of labels with different

data amounts. As expected, Figure 4 shows that in the major-

ity of data conditions, the BLEU score increases with higher

quality labels.

4.3. Self-Training

So far, pseudo-labels have been generated via a cascade model.

We now attempt to simplify the pseudo-labeling process by

using end-to-end speech translation models. The pure self-

training scenario where the LSTM end-to-end model has only

been trained on the supervised training data is first considered.

4The higher WER obtained with 17,607h of data is simply due to
the large amount of weakly supervised data but this setting still benefits
the ST task.
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Figure 4: Effect of the quality of the pseudo-labels. Results are

reported on the En-De MuST-C dev set.

Table 6: Pseudo-labeling with end-to-end speech translation.

Results are reported on the En-De MuST-C dev set, after fine-

tuning.

Data
Pseudo-Labeling

Model BLEU
Model

MuST-C N/A LSTM 16.3

+ 3523h LL

Cascade

LSTM

20.8

LSTM 18.5

VGGT 20.6

MuST-C + LS N/A LSTM 19.2

+ 17,607h LL

Cascade

VGGT

23.8

LSTM 20.7

VGGT 24.5

Pseudo-labels are also generated with the VGGT model trained

on MuST-C, LS and 17,607h of LIBRILIGHT data. Results

are reported in Table 6. First, all pseudo-labeling methods im-

prove upon the baseline, even the pure self-training method.

The weakest pseudo-labeling method is the pure self-training

method that does not use extra information in the process. In the

lower resource baseline setting, the cascade and VGGT obtain

equivalent performance, the cascade having a slight advantage

of 0.2 BLEU. In the higher resource setting, the VGGT end-to-

end pseudo-labeling method outperforms the cascade pseudo-

labeling by 0.7 BLEU. We conclude that the cascade pseudo-

labeling can be used to bootstrap the pseudo-labeling process,

then it is possible to rely entirely on end-to-end speech transla-

tion for pseudo-labeling in subsequent iterations.

5. Conclusion

We have shown the effectiveness of pseudo-labels for end-to-

end speech translation in low-resource and high-resource data

conditions, across two domains and 3 language pairs. In the

high-resource setting, fine-tuning and larger architectures were

found to be critical for obtaining improvements over the base-

line. Larger amounts of pseudo-labels allow to increase the

model size further. By doing so, we obtained state-of-the-art

results on the MuST-C English-French and English-German

datasets. Our approach was shown empirically to be more ef-

fective than encoder pre-training, highlighting the importance

of pre-training the decoder as well. Finally, the pseudo-labeling

process was further simplified by utilizing end-to-end speech

translation systems instead of a cascade system.
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