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ABSTRACT

Transformer-based models have achieved state-of-the-art per-
formance on speech translation tasks. However, the model
architecture is not efficient enough for streaming scenarios
since self-attention is computed over an entire input sequence
and the computational cost grows quadratically with the
length of the input sequence. Nevertheless, most of the pre-
vious work on simultaneous speech translation, the task of
generating translations from partial audio input, ignores the
time spent in generating the translation when analyzing the la-
tency. With this assumption, a system may have good latency
quality trade-offs but be inapplicable in real-time scenarios.
In this paper, we focus on the task of streaming simultaneous
speech translation, where the systems are not only capable
of translating with partial input but are also able to handle
very long or continuous input. We propose an end-to-end
transformer-based sequence-to-sequence model, equipped
with an augmented memory transformer encoder, which
has shown great success on the streaming automatic speech
recognition task with hybrid or transducer-based models. We
conduct an empirical evaluation of the proposed model on
segment, context and memory sizes and we compare our
approach to a transformer with a unidirectional mask. 1

Index Terms— End-to-end speech translation, Simulta-
neous speech translation, Streaming speech translation

1. INTRODUCTION

Streaming speech translation targets low latency scenarios
such as simultaneous interpretation. Unlike the streaming
automatic speech recognition (ASR) task where input and
output are monotonically aligned, translation needs a larger
future context due to reordering. Generally, simultaneous
translation models start to translate with partial input, and
then alternate between generating predictions and consuming
additional input. While most previous work on simultaneous
translation focus on text input, [1, 2, 3, 4, 5] the end-to-end
approach for simultaneous speech translation has also very

1This work has been submitted to the IEEE for possible publication.
Copyright may be transferred without notice, after which this version may
no longer be accessible.

recently attracted interest from the community [6, 7] due
to potentially lower latency compared with cascade mod-
els [8, 9, 10, 11]. However, most studies tend to focus on
an ideal setup, where the computation time to generate the
translation is neglected. This assumption may be reasonable
for text to text but not for speech to text translation since
the latter has much longer input sequences. A simultaneous
speech translation model may have the ability to generate
translations with partial input but may not be useful for real-
time applications because of slow computation in generating
output tokens.

While the majority of previous work on streaming speech
to text tasks has focused on ASR, most prior work on ASR
is not directly applicable to translation. Encoder-only or
transducer structures are widely implemented, since ASR
assumes the output is monotonically aligned to the input. In
order to achieve an efficient streaming simultaneous speech
translation model, we combine streaming ASR and simul-
taneous translation techniques and introduce an end-to-end
transformer-based speech translation model with an aug-
mented memory encoder [12].

The augmented memory encoder has shown considerable
improvements on latency with little sacrifice on quality with
hybrid or transducer-based models on the ASR task. It incre-
mentally encodes fixed-length sub-sentence level segments
and stores the history information with a memory bank, which
summarizes each segment. The self-attention is only per-
formed on the current segment and memory banks. A decoder
with simultaneous policies is then introduced on top of the
encoder. We apply the proposed model to the simultaneous
speech translation task on the MuST-C dataset [13].

This paper is organized as follows. We first define the
evaluation method for simultaneous speech translation. We
then introduce the model based on the augmented memory
transformer. Finally, we conduct a series of experiments to
demonstrate the effectiveness of the proposed approach.

2. EVALUATION

This paper focuses on streaming and simultaneous speech
translation, which features two additional capabilities com-
pared to a traditional offline model. The first one is the ef-
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ficient computation needed to handle streaming input, and
the second is the ability to start a translation with partial in-
put, then dynamically generate additional tokens or read ad-
ditional input. Both factors need to be considered for evalua-
tion.

A simultaneous system is evaluated with respect to qual-
ity, usually with BLEU, and latency. Latency is evaluated
with computation-aware and non computation-aware Av-
erage Lagging (AL) [7, 3]. Denote the input sequence as
X = [x1, ...], where each element is a feature vector ex-
tracted from a sliding window of size T and the translation of
the system Y = [y1, ...] and a reference translation Y∗. Non
computation-aware (NCA) latency is defined as follows

AL =
1

τ(|X|)

τ(X)∑
i=1

d(yi)−
|X|
|Y∗|

· T · (i− 1) (1)

where τ(|X|) is the index of the first target token when the
system has read the entire source input, and d(yi) is the du-
ration of the speech that has been read when generating word
yi. Additionally, a computation-aware (CA) version of AL
is also considered, by replace d(yi) with the time needed to
generate yi.

3. MODEL

The proposed streaming speech translation model, illustrated
in Fig. 1, consists of two components, an augmented mem-
ory encoder and a simultaneous decoder. The encoder incre-
mentally and efficiently encodes streaming input, while the
decoder starts translation with partial input, then interleaves
reading new input and predicting target token under the guid-
ance of a simultaneous translation policy.

3.1. Augmented Memory Encoder

The self-attention module in the original transformer model
[14] attends to the entire input sequence, which precludes
streaming capability. Denote H = [h1, ..] the input of a cer-
tain encoder layer. Each self-attention projects the input into
query, key and value.

Q =WqH,K =WkH,V =WvH (2)

At each position j, a weight is calculated as follows

αjj′ =
exp(β ·QT

j Kj′)∑
k exp(β ·QT

j Kk)
(3)

The self-attention at position j can then be calculated as

Zj =
∑
j′

αjj′Vj′ (4)

The calculation of self-attention make it inefficient for stream-
ing applications. [12] proposes an augmented memory trans-
former encoder to address this issue. Instead of attending to

entire input sequence X, the self-attentions are applied on
a sequence of sub-utterance level segments S = [s1, ...]. A
segment sn, which contains a span of input features, consists
of three parts: left context ln of size L, main context cn of
size C and right context rn of size R. Each segment overlaps
with adjacent segments — the overlap between current and
previous segment is ln, and between current and the next seg-
ment is rn. Self-attention is computed at the segment level,
which reduces the amount of computation. The new query,
key and value for each segment are

qn = Wq(ln, cn, rn, σn) (5)
kn = Wk(Mn−N :n−1, ln, cn, rn) (6)
vn = Wv(Mn−N :n−1, ln, cn, rn) (7)

Where σn =
∑

xk∈sn xk is a summarization of the segment
sn, and Mn−N :n = [mn−N , ...,mn−1] are the memory
banks. Each memory bank is calculated as follows:

mn =
∑
j′

α−1,j′(vn)j′ (8)

which is introduced to represent history information. A hy-
perparameter N controls how many memory banks are re-
tained. The self-attention is then calculated as follows:

αjj′ =
exp(β · (qTn )j(kn)j′)∑
k exp(β · (qTn )j(kn)k)

(9)

(zn)j =
∑
j′

αj,j′(vn)j′ (10)

where N + L < j ≤ N + L+ C (11)

Then only the central encoder states are kept and a the con-
catenation of the segment states Z = [z1, ...] is passed to
decoder. Because of the left and right contexts, an arbitrary
encoder can run on the segments without boundary mismatch.
In this paper, we adapt the encoder of the convtransformer
architecture [15]. The encoder first consists of convolu-
tional layers with stride 2 that subsample the input. Full
self-attention layers can then be calculated.

3.2. Simultaneous Decoder

A simultaneous decoder starts translation with partial input
based on a policy. Simultaneous policies decide whether the
model should read new inputs or generate a new prediction
at a given time. However, different from text translation, our
preliminary experiments show that for simultaneous speech
translation, encoder states are too granular for policy learn-
ing. Thus, we adopt the idea of pre-decision [7] for bet-
ter efficiency by making simultaneous read and write deci-
sion on chunks of encoder states. Here, the simpler fixed
pre-decision strategy is used where the decision is made ev-
ery fixed number of encoder states. Denote the sequence
of chunks are W = [w1, ...] and the start and end encoder
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Fig. 1: Architecture of streaming transformer model with an
augmented memory encoder.

state index of wk is Ws(k),We(k). Denote the prediction
of model Y = [y1, ...], the general decoding algorithm of a
simultaneous policy P with augmented memory transformer
is described in Algorithm 1. In theory, Algorithm 1 supports
arbitrary simultaneous translation policies. In this paper, for
simplicity, wait-k [3] is used. It waits for k source tokens and
then operating then reading and writing alternatively. Notice
that our method is compatible with an arbitrary simultaneous
translation policy.

Note that the decoder self-attention still has access to all
previous decoder hidden states; in order to preserve stream-
ing capability for the decoder, decoder states are reset every
time an end-of-sentence token is predicted. The augmented
memory is not introduced in the decoder because the target
sequence is dramatically smaller than the source speech se-
quence. The decoder can still predict a token in a negligible
time compared with encoding source with the input becoming
longer.

4. EXPERIMENTS

Experiments were conducted on the English-German MuST-
C dataset [13]. The training data consists of 408 hours of
speech and 234k sentences of text. We use Kaldi [16] to ex-
tract 80 dimensional log-mel filter bank features. The features
are computed with a 25ms window size and a 10ms window
shift and normalized with global cepstral mean and variance.
Text is tokenized with a SentencePiece2 10k unigram vocabu-

2https://github.com/google/sentencepiece

Algorithm 1 Chunk-based simultaneous policy with an aug-
mented memory encoder
Require: Chunk-based simultaneous policy P
Require: Streaming input X. Memory banks M. Prediction Y
Require: Maximum memory size N . Decision chunk size W
Require: Central context size C. Encoder pooling ratio R
Require: i = 1, n = 1, k = 1.
Require: We(1) = 1, y0 = BOS

1: while yi−1 6= EndOfTranslation do
2: if We(k) +W > n · C ·R then
3: zn,mn = Encoder(sn,Mn−N :n−1)
4: Z = [Z, zn],M = [M,mn]
5: n = n+ 1 # Read a new segment of input features
6: wk = Summarize(ZWs(k):We(k))
7: pik = P([Y1:i−1],wk)
8: if pik > 0.5 then
9: yi = Decoder([Y1:i−1],Z)

10: i = i+ 1 # Predict a target token
11: else
12: Ws(k + 1) = We(k) + 1
13: k = k + 1 # Move to the next chunk of encoder states

lary. Translation quality is evaluated with case-sensitive deto-
kenized BLEU with SACREBLEU3. The latency is evaluated
by Average Lagging [3, 7], with the SimulEval toolkit4.

The speech translation model is based on the convtrans-
former architecture [15]. It first contains two convolutional
layers with subsampling ratio of 4. Both encoder and decoder
have a hidden size of 256 and 4 attention heads. There are
12 encoder layers and 6 decoder layers. The model is trained
with label smoothed (0.1) cross entropy. We use the Adam
optimizer [17], with a learning rate of 0.0001 and an inverse
square root schedule.

We use a simplified version of [6] as our baseline model.
A unidirectional mask is introduced to prevent the encoder
from looking into future information. For baseline models,
we follow common practice for simultaneous text translation
where the entire encoder is updated once there is new input.
Instead of a multi-task setting and a decision making process
depending on word boundaries obtained from the auxiliary
ASR task, we make decisions on a fixed size chunk of encoder
states, following [7]. Our choice is motivated by the fact that
in [7], a fixed chunk size gave similar quality-latency trade-
offs as word boundaries.

All transformer-based speech translation models are first
pre-trained on the ASR task, in order to initialize the encoder.
Each experiment is run on 8 Tesla V100 GPUs with 32 GB
memory. The code is developed based on Fairseq5, and it will
be published upon acceptance. All scores are reported on the
dev set.

3https://github.com/mjpost/sacrebleu
4https://github.com/facebookresearch/SimulEval
5https://github.com/pytorch/fairseq

https://github.com/google/sentencepiece
https://github.com/mjpost/sacrebleu
https://github.com/facebookresearch/SimulEval
https://github.com/pytorch/fairseq


5. RESULTS

We first analyze the effect of the segment and context sizes,
and use the resulting optimal settings for further analysis on
the maximum number of memory banks and for comparison
with the baseline.

5.1. Effect of Segment and Context Size

We analyze the effect of different segment, left and right
context sizes. For all experiments, we use the wait-k (k =
1, 3, 5, 7) policy on a chunk of 8 encoder states [7]. The
latency-quality trade-offs with different sizes are shown in
Figure 2. We first observe that, increasing the left and right
context size will improve the quality with very small trade-off
on latency, for instance, from curve “S64 L16 R16” to “S64
L32 R32”. This indicates that context of both sides can allevi-
ate the boundary effect. We also notice that when we reduce
the segment size from 64 to 32, the BLEU score decreases
dramatically. Similar observations are made in [12] but the
ASR models are more robust to decreasing the segment and
context sizes. We hypothesize that reordering in translation
makes the model more sensitive to these sizes.
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Fig. 2: Effect of segment, left and right context size. Each
curve represents wait-k, k = 1, 3, 5, 7 policies. The size is
measured on a frame of 10 ms. “S{x} L{y} R{z}” means a
encoder with segment size x, left size y and right size x.

5.2. Number of Memory Banks

In streaming translation, the input is theoretically infinite. In
order to prevent memory explosion, we explore the effect of
reducing the number of the memory banks. Fig. 3 shows the
effect of different numbers of memory banks. We can see
that the model is very robust to the size of the memory banks.
Similar to [12], when the maximum number of memory banks
is large, for instance, larger than 3, there is little or no perfor-
mance drop. However, we still observe a drop in performance
with a maximum number of one memory bank. Finally, we
found that training with different maximum numbers of mem-
ory banks was necessary as limiting the number of memory
banks only at inference time degraded performance.
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Fig. 3: Effect of the maximum number of memory banks.
Each curve represents one policy. The number on top of the
nodes indicates the number of memory banks being kept.

5.3. Comparison with Baseline

In Fig. 4, we compared our model with the baseline model
described in Section 4. The proposed model achieves better
quality with an increase in computation aware and non com-
putation aware latency. The baseline achieves competitive la-
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Fig. 4: Comparison with baseline model. CA indicates mea-
sured by computation aware latency. Chunk of x means that
the encoder states are updated every x steps.

tency because it only updates encoder states every 8 steps.
However, there may be instances where recomputing encoder
states every step may be needed, for example in the case of a
flexible pre-decision module or when a the model includes a
boundary detector [6]. We can see in Fig. 4 that the computa-
tion aware AL for the baseline increases substantially with a
chunk of size 1.

6. CONCLUSION

In this paper, we tackle the real-life application of streaming
simultaneous speech translation. We propose a transformer-
based model, equipped with an augmented memory, in order
to handle long or streaming input. We study the effect of seg-
ment and context sizes, and the maximum number of mem-
ory banks. We show that our model has better quality with
an acceptable latency increase compared with a transformer
with unidirectional mask baseline and presents better quality-
latency trade-offs than that baseline where encoder states are
recomputed at every step.
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