
i
i

“book-chapter” — 2015/6/7 — 20:58 — page 1 — #1 i
i

i
i

i
i

Computer-Aided Design for Next-Generation Quantum Computing Systems 1

Chapter 1

COMPUTER-AIDED DESIGN FOR
NEXT-GENERATION

QUANTUM COMPUTING SYSTEMS

Alireza Shafaei , Mohammad Javad Dousti∗, and Massoud Pedram
Department of Electrical Engineering,

University of Southern California, Los Angeles, CA

PACS 05.45-a, 52.35.Mw, 96.50.Fm.

Keywords: Physical Design, Quantum Computing, Compiler, Fault-tolerant Quantum
Computation, Quantum Mapper.

Abstract

A computer-aided design (CAD) flow for large-scale quantum circuits is presented
in this chapter. The proposed flow along with other stand-alone tools are implemented
in a tool suite called Next-generation Quantum Computing Systems (NQCS) Tool-
box, which receives as input a physical machine description (PMD), a quantum error
correction (QEC) code, a quantum control (QC) protocol, as well as a quantum algo-
rithm, and produces a machine control language (MCL) code and physical resource
requirements. NQCS Toolbox comprises of several stand-alone tools to perform re-
quired tasks, and interactions between these tasks are achieved through well-defined
interfaces. This modular design approach simplifies the task of developing and en-
suring the correctness of the overall design flow. By taking advantage of hierarchical
designs in quantum circuits, NQCS is able to efficiently handle large-scale quantum
benchmarks.

∗E-mail address: dousti@usc.edu

dousti@usc.edu

i
i

“book-chapter” — 2015/6/7 — 20:58 — page 2 — #2 i
i

i
i

i
i

2 Shafaei, Dousti, Pedram

1. Introduction

Quantum computing offers the potential of dramatically better performance on certain
problems compared to classical computing. As a result, substantial research effort has
been invested in discovering high-level algorithms that could operate on a quantum com-
puter [1–4], and in developing a wide variety of physical technologies that might make the
construction of a quantum computer possible [5]. However, less attention has been paid to
the computer-aided design (CAD) aspects of quantum computing.

One way to view the implementation of a quantum algorithm on a realistic quantum
computer is as a quantum physics experiment that is under the control of a classical com-
puter. The experimental apparatus consists of several parts. The quantum core contains
the physical qubits whose quantum-mechanical properties are used to accomplish the com-
putation. Classical control and detection systems serve to initialize, manipulate, and read
out the state of the quantum core. A real-time classical computer directs the quantum ex-
periment by issuing a sequence of instructions to the control and readout electronics, to be
performed on the quantum core. The instruction sequence is generated from a high-level
quantum program by an off-line compilation process. Similarly, result verification and out-
put post-processing are also done off-line.

A realistic, non-ideal quantum computer is subject to noise and faces numerous limita-
tions and constraints. For example, the quantum core components are sensitive to environ-
mental disturbances and to errors in the control and detection systems. If ignored, either
of these effects can rapidly lead to computational error. The rate at which errors occur
limits the length of computations that can be carried out. In addition, the technology used
to implement the quantum computer will be subject to design constraints on parallelism,
geometry, bandwidth, etc., that further narrow the options for implementing ideal quantum
algorithms.

There is strong theoretical evidence that arbitrarily long quantum computations could be
carried out on realistic quantum computers if the error rates per gate and per time step could
be reduced below a level known as the “fault-tolerant accuracy threshold” [6]. This process,
known as fault-tolerant quantum computation, relies in part on the ability of quantum error-
correcting codes to protect the quantum information used in the computation from random
disturbances.

Using currently known techniques, implementation of fault-tolerant quantum computa-
tion will require massive computational resources. This work thus proposes a CAD flow
for quantum information processing that receives as input a physical machine description
(PMD), a quantum error correction (QEC) code, a quantum control (QC) protocol, as well
as a quantum algorithm, and produces different artifacts including but not limited to a ma-
chine control language (MCL) code, and physical resource requirements. The proposed
CAD flow is called Next-generation Quantum Computing Systems (NQCS). This flow
along with other stand-alone tools are implemented in a tool suite which will be referred to
as the NQCS Toolbox in the rest of the chapter.

NQCS Toolbox comprises of several stand-alone tools to perform required tasks. These
tools interact with each other through well-defined interfaces. This feature allows the tool
developers to work on individual tools independently, and any new tool can be simply added
to the whole flow in the future. Moreover, NQCS users have the flexibility of augmenting

i
i

“book-chapter” — 2015/6/7 — 20:58 — page 3 — #3 i
i

i
i

i
i

Computer-Aided Design for Next-Generation Quantum Computing Systems 3

the interface files when and if needed. To finish, this modular design approach simplifies
the task of ensuring the correctness of the overall design flow.

As a proof of concept, NQCS Toolbox uses Scaffold Compiler [7] as the quantum com-
pilation tool to generate HF-QASM of the given quantum algorithm, and QUFD [8] to
provide the latency and MCL of fault-tolerant gates for the given PMD, QEC, and QC. Fur-
thermore, Squash 2 [9] is adopted as the quantum physical design tool which translates the
HF-QASM to the final circuit MCL, and reports the final physical resources.

The remainder of this chapter is organized as follows. A list of key definitions required
for the rest of this chapter are provided in Section 2. NQCS requirements are explicitly
described in Section 3. Section 4 analyzes functional requirements and provides detailed
discussions on the key components in the design flow. Interface specifications are presented
in Section 5. Verification methods and performance measures are explained in Section 6
and Section 7, respectively. Finally, recommendations for further reading are presented in
Section 8.

2. Key Definitions

The following terms have been used throughout this chapter.

Physical Machine Description (PMD) A description for the underlying quantum physi-
cal machine technology, which include the qubit de-coherence super-operator, con-
trol response functions, inter-qubit connectivity, geometric constraints (e.g., nearest
neighbor interactions), qubit movement constraints, crosstalk, and detector parame-
ters.

Quantum Control (QC) A protocol to control the quantum dynamics of the quantum
hardware.

Native instruction A quantum gate that belongs to the instruction set of a PMD. (e.g., Rx,
Ry, and Rz, which are equal to the rotation of the quantum bit around the X-, Y-, and
Z-axes by an arbitrary angle).

Basic operations Quantum gates that are used in fault-tolerant quantum computation. The
standard universal set of the basic operations includes H, T, CNOT, S, X, Y, and Z
gates. Quantum circuits are built out of basic operations. However, to realize a given
quantum circuit in the given PMD, each basic operation should be implemented by
using native instructions (e.g., T = Rz(π/4) and H = Ry(π/2)Rz(π), up to a global
phase).

Quantum Gate Set (QGS) A universal set of quantum gates to be used in a fault tolerant
quantum computation. The standard universal set includes T, S, H, X, Y, Z, and
CNOT. Basic single-qubit measurements of X and Z are also included in the QGS.

Primitive cells PMD of a quantum circuit fabric consists of a 2D array of identical primi-
tive cells (or cell for short). Each cell contains some sites for generating/initializing
qubits, reading them out, performing operations on one or two physical qubits, and
resources for moving information about qubits.

i
i

“book-chapter” — 2015/6/7 — 20:58 — page 4 — #4 i
i

i
i

i
i

4 Shafaei, Dousti, Pedram

Tile Dealing with the 2D array of primitive cells is very cumbersome and unwieldy. So
in practice we build another 2D array of super-cells (which we call tiles). Each tile
comprises of an n× n array of primitive cells. We can thus deal with mapping a
quantum algorithm to this tiled architecture. An example of a 2×2 tiled architecture
where each tile consists of a 4× 4 cell is shown in Figure 7. The layout consists of
tiles where each tile stores a single logical qubit and ancillae to enable all single-qubit
logical gates. To execute a CNOT gate (as a two-qubit operation), target and control
logical qubits should initially be collocated.

Universal Logic Block (ULB) ULB is analogous to a Configurable Logic Block in an
FPGA device, which means it can implement any of a set of target functions.

Computing Universal Logic Block (CULB) A ULB that is capable of performing one-
and two-input fault-tolerant gate operations on one or two logical qubits. It can also
perform quantum error correction on a single logical qubit.

Memory Universal Logic Block (MULB) A ULB that can store several idle logical
qubits. It periodically performs QEC on the logical qubits (one after another) in
order to maintain their fidelity.

Scaffold A high-level programing language that is used to describe a quantum algorithm.
More information about the Scaffold and its associated compiler can be found in [10]
ans [7], respectively.

Quantum Assembly Language (QASM) A gate-level programming language for de-
scribing a quantum circuit [11].

Hierarchical Fault-tolerant Quantum Assembly Language (HF-QASM) An interme-
diate representation between the front-end and back-end parts of the NQCS Tool-
box. This representation is a variant of QASM with hierarchy added and gate types
restricted to fault-tolerant gates.

Extensible Markup Language (XML) XML is a simple and powerful language, which
has been used extensively to design textual databases. It is a markup language that
defines a set of rules for encoding documents in a format that is both human-readable
and machine-readable. The design rules are specified with XML schema files. There
are many XML development resources and solutions, XML parsers, etc., which are
quite helpful for us.

Mini languages A set of XML-based specifications that describe the PMD, the QC proto-
col, and the Quantum Error Correction (QEC) code. To describe the encoding/decod-
ing circuity of the QEC code, a quantum circuit description language (e.g. QASM)
is also required.

Machine description and protocol libraries After processing Mini languages, the ma-
chine description and protocol libraries are created, which include: (i) the realization
of each gate in QGS using native instructions of the given PMD by considering the
QC protocol, and (ii) encoding/decoding circuits for the given QEC code.

i
i

“book-chapter” — 2015/6/7 — 20:58 — page 5 — #5 i
i

i
i

i
i

Computer-Aided Design for Next-Generation Quantum Computing Systems 5

Quantum Instruction Dependency Graph (QIDG) Graph representation of a quantum
circuit, in which nodes represent (assembly) instructions and edges capture data de-
pendency between operands of the instructions. This graph is used in scheduling,
placement and routing steps of the quantum physical designer.

Quantum Universal logic block Factory Designer (QUFD) A tool designed by NQCS
team that generates a library of MCL codes for fault-tolerant quantum gates.

Quantum Physical Designer (QPD) Main tool of the back-end which generates MCL of
the quantum circuit through scheduling, placement, and routing.

Machine Control Language (MCL) A low-level textual language which encodes simple
control instructions that would be delivered to the classical real-time computer. The
set of instructions is therefore necessarily tightly coupled to the physical machine de-
scription. The classical computer would then translate the machine control language
instructions into technology-dependent commands (e.g., lasers, detectors, magnets,
RF-signal generators, etc) for execution by the specific hardware components that
control the qubits and quantum gates. The machine control language may include
items such as qubit movement primitives, readout primitives, control primitives, qubit
addressing, and pulse shapes. The MCL is analogous to the classical Instruction Set
Architecture (ISA).

Resource Calculation (RC) A major task in the Toolbox that calculates the physical re-
sources (i.e., the number of physical qubits, the number of physical gate operations,
and circuit delay) needed to implement a quantum algorithm.

Multiple-Control Toffoli (MCT) A Toffoli gate with multiple controls.

Enhanced Functional Flow Block Diagram (EFFBD) An EFFBD represents the behav-
ior for a system or components of a system. The purpose of the EFFBD is to indicate
the sequential relationship of all functions that must be accomplished by a system.
EFFBDs show the same tasks identified through functional decomposition and dis-
play them in their logical, sequential relationship at different levels of a hierarchy.

Satisfiability (SAT) In computer science, SAT is the problem of determining if the vari-
ables of a given Boolean formula can be assigned in such a way as to make the
formula evaluate to TRUE. Equally important is to determine whether no such as-
signments exist, which would imply that the function expressed by the formula is
identically FALSE for all possible variable assignments. In this latter case, we would
say that the function is unsatisfiable; otherwise it is satisfiable. SAT was the first
known example of an NP-complete problem.

3. NQCS Toolbox Requirements

The NQCS Toolbox requirements can be divided into functional and interface requirements
as discussed below.

i
i

“book-chapter” — 2015/6/7 — 20:58 — page 6 — #6 i
i

i
i

i
i

6 Shafaei, Dousti, Pedram

3.1. Functional Requirements

The NQCS Toolbox provides the following functional requirements:

1. The NQCS Toolbox allows the quantum programmer to write the quantum algorithm
in Scaffold language providing quantum data types, quantum operations, classical
operations, and appropriate control flow structures. Scaffold is discussed in [10].

2. The NQCS Toolbox enables

(a) PMD expert to describe a new PMD architecture, along with error rates and
latencies for various quantum instructions,

(b) QEC expert to describe a new quantum error correction code, and

(c) QC expert to describe a new quantum control protocol.

The above items are provided by the use of Mini languages.

3. The NQCS Toolbox provides an efficient quantum compiler for the quantum pro-
grammer. Quantum compiler is discussed in [7].

4. The NQCS Toolbox generates the machine description language (i.e., MCL code)
for the quantum programmer given the Scaffold program, QC, QEC code, and PMD
specification. MCL generation is discussed in Section 4.5.

5. The NQCS Toolbox includes standalone tools for calculating physical resources for
the given Scaffold program, QC protocol, QEC code, and PMD specification. Re-
source calculation is discussed in Section 4.6.

6. The NQCS Toolbox provides a set of software utilities such as a timing simulator
and the NQCS quantum programming environment. Timing simulator is discussed
in Section 4.5.1.

7. The NQCS Toolbox supports a mechanism to analyze the correctness of algorithm
implementations in Scaffold. Verification is discussed in Section 6.

3.2. Interface requirements

The NQCS Toolbox provides the following interface requirements:

1. The input to the whole design flow is a quantum algorithm written in Scaffold [10].

2. The input to the front-end tool suite is a program in Scaffold, and the output is
HF-QASM.

3. The input to the quantum physical design (back-end) is HF-QASM, and the output is
MCL code.

4. Inputs to the resource calculation tool are HF-QASM as well as error rate and delay
information extracted from protocol libraries, and the output is physical resources (#
of physical qubits, # of physical gates and their types, # of clock cycles).

i
i

“book-chapter” — 2015/6/7 — 20:58 — page 7 — #7 i
i

i
i

i
i

Computer-Aided Design for Next-Generation Quantum Computing Systems 7

5. The input to the Mini language processor is a set of XML and QASM files for de-
scribing (PMD, QC, QEC), and the output is protocol libraries.

6. The input to the library designer is a set of protocol libraries, and outputs are MCLs
for gates, tile design and the 2D title architecture.

7. The NQCS Toolbox provides an integrated development environment, in the sense
that a quantum algorithm written by a quantum programmer in Scaffold will be
transformed into the final MCL after applying several automated tools including a
quantum compiler, a synthesizer, etc.

Interface requirements are verified by monitoring and validating (as much as possible)
inputs and outputs of the front-end and back-end tools, resource calculator, Mini language
processor, and library designer.

Based on the above interface requirements, the following stand-alone tools are available
in the NQCS Toolbox:

• Quantum compiler
• Mini language processor
• Reversible logic synthesizer
• Physical designer

• Verifier(s)
• Integrated Development Environmnet

(IDE) and visualizers

4. Functional Requirements Analysis and Specification

Functional analysis is the process of identifying, describing, and relating the functions a sys-
tem must perform in order to fulfill its goals and objectives. Functional analysis is logically
structured as a top-down hierarchical decomposition of those functions. Several techniques
are available to do functional analysis. The primary functional analysis technique is the
functional flow block diagram technique. These diagrams show the network of actions that
lead to the fulfillment of a function. This section uses Enhanced Functional Flow Block
Diagram (EFFBD) representation, which is based on [12, Appendix F], to depict functional
decomposition of the NQCS Toolbox.

4.1. Enhanced Functional Flow Block Diagram (EFFBD)

The purpose of the EFFBD is to indicate the sequential relationship of all functions that
must be accomplished by a system. EFFBDs show the same tasks identified through func-
tional decomposition and display them in their logical, sequential relationship at different
levels of a hierarchy. For example, the entire tool chain flow of a quantum circuit designer
can be defined in a top level EFFBD, as shown in Figure 1. Each block in the first level di-
agram can then be expanded to a series of functions, as shown in the second level diagrams
in Figure 3 to Figure 13. EFFBDs use the following symbols and notation:

• Functions are represented as rectangular boxes (blocks) with an associated label num-
ber. Functional (control) flow is shown by head-flat arrows, whereas data flow over-
lay to capture data dependencies is represented by head-filled arrows and elongated
ovals.

i
i

“book-chapter” — 2015/6/7 — 20:58 — page 8 — #8 i
i

i
i

i
i

8 Shafaei, Dousti, Pedram

1.0

Quantum

Compilation

(Frontend)

2.0

Mini

Language

Processing

3.0

Quantum

Tile Factory

Design

4.0

Quantum

Physical

Design

(Backend)

Scaffold

Code

QASM-HF

Mini Languages

(PMD, QEC, QC)

Machine Description

& Protocol Libraries

Tile Design &

Tiled Arch.

Circuit MCL
AND

Costs &

Metrics

Top Level

OR

5.0

Resource

Calculation

QGS

Gate/Special-Op

MCLs

AND

MCL

BRE

6.0

Verification

Process

Valid

Circuit

Figure 1. EFFBD of NQCS top level. For EFFBD notation please refer to Section 4.1.

• Each function receives a unique label number that can be used as identification, and is
shown in the top-left corner of the function. The numbering scheme establishes iden-
tification and relationships that carry through all the diagrams and facilitate traceabil-
ity from the lower levels to the top level.

• Lines connecting functions indicate functional flow and not lapsed time or interme-
diate activity.

• Diagrams are laid out so that the flow direction is generally from left to right. The di-
agrams show both input (e.g., “Mini language Processing”) and output (e.g., “Quan-
tum Physical Design”), thus facilitating the definition of interfaces and control pro-
cesses.

• Each diagram contains a reference to other functional diagrams to facilitate move-
ment between pages of the diagrams.

• Gates are also used, including “AND”, “OR”, “Go or No-Go”, sometimes with en-
hanced functionality, including exclusive OR gate (XOR), iteration (IT), repetition
(RP), or loop (LP).

• A circle is used to denote a summing gate when AND/OR is present. As expected,
AND indicates parallel functions and all conditions must be satisfied to proceed (i.e.,
concurrency) whereas OR indicates that alternative paths can be satisfied to proceed
(i.e., selection).

• “Go or No-Go” decision blocks are shown by a diamond. The “Go” path from the
decision block is executed if the condition is met; otherwise, the “No-Go” path is
executed. These symbols are placed adjacent to lines leaving a particular function to
indicate alternative paths.

An EFFBD specification of a system is complete enough that it is executable as a dis-
crete event model, capable of dynamic as well as static validation. EFFBDs provide free-
dom to use either control constructs or data triggers or both to specify execution conditions
for the system functions.

i
i

“book-chapter” — 2015/6/7 — 20:58 — page 9 — #9 i
i

i
i

i
i

Computer-Aided Design for Next-Generation Quantum Computing Systems 9

QEC Expert

QC Expert

PMD Expert

Quantum

Programmer

NQCS Toolbox

Implement

Quantum Algorithm

in Scaffold

Compile

Simulate Timing

Verify Implemented

AlgorithmMini Language

Calculate

Physical

Resources

Generate MCL

<<include>>

Figure 2. Use-case diagram of the NQCS Toolbox.

4.2. The NQCS Toolbox

The top- (first-) level diagram of the NQCS Toolbox is depicted in Figure 1, which is then
expanded to second-level diagrams in Figure 3 through Figure 13. NQCS, at the top-level
view, performs the following two major tasks:

• Design automation for a quantum compiler, which maps a quantum algorithm into
an MCL code, and

• Resource calculation, which reports the physical resources that are sufficient to im-
plement a quantum algorithm on a target PMD.

These tasks consider QEC to protect qubits against noise, and QC to increase the fi-
delity. As a result, a combination of quantum algorithm, PMD, QEC code, and QC protocol
acts as the input to each task. More accurately, the primary inputs to NQCS are classified
as follows:

• A quantum algorithm written in Scaffold [10].

• Mini languages, which are a set of XML-based specifications that describe the PMD,
the QC protocol, and the QEC code.

• A universal set of quantum gates to be used in a fault tolerant quantum computa-
tion (previously referred to as basic operations.) This universal set is referred to as
QGS and includes T, S, H, X, Y, Z, and CNOT [6]. For the given QEC code, the
exact implementation of each of the gates in the QGS is given as a QASM file. We
also include basic single-qubit measurements of X and Z in the QGS, since they
are a necessary part of a fault-tolerant quantum computing scheme. In addition to

i
i

“book-chapter” — 2015/6/7 — 20:58 — page 10 — #10 i
i

i
i

i
i

10 Shafaei, Dousti, Pedram

the standards gates, new gates can also be added to this set as long as an efficient,
fault-tolerant implementation for the new gates exists in the given QEC code, and
implementation costs are properly considered in the synthesis step.

To perform quantum computation fault-tolerantly, quantum gates should be chosen from
the QGS to build quantum circuits. To this end, NQCS adopts the following approach (cf.
Figure 1):

1. “1.0 Quantum Compilation (Front-end)” in Figure 1, receives Scaffold code and the
QGS, compiles the code, and synthesizes it to a circuit consisting of gates from QGS.
This intermediate representation is called HF-QASM.

2. The HF-QASM representation is then translated by “4.0 Quantum Physical Design
(Back-end)” to a physical quantum circuit language, i.e., the MCL description. How-
ever, prior to the physical design, an MCL code for each gate in the QGS is generated
as follows:

(a) After processing Mini languages (cf. function 2.0 in Figure 1), the machine
description and protocol libraries are created, which include: (i) the realization
of each gate in QGS using native instructions of the given PMD by considering
the QC protocol, and (ii) encoding/decoding circuits for the given QEC code.

(b) “3.0 Quantum Library Design” uses the data set generated in (a) in order to
produce the internal design of a tile, the 2D tiled-architecture of the PMD, and
MCL codes for QGS members and also the special operations (or, special-ops
for short). Special-ops are defined in this chapter as the hop operation (i.e.,
one step move operation in up, down, left or right directions), and syndrome
extraction for the QEC code.

3. In addition to the back-end, which generates the MCL code, “5.0 Resource Calcu-
lation” computes the costs and metrics for the quantum algorithm that include the
number of physical qubits, number of physical gate operations, and the circuit delay
(i.e., number of physical time steps to execute the quantum algorithm).

4. Verification shows proof of compliance with the Toolbox requirements where vali-
dation shows that Toolbox accomplishes its major tasks. “6.0 Verification Process”
handles these cases and will be discussed in Section 6.

Based on the above discussion, it can be seen that the NQCS uses a meet-in-the-middle
approach to generate the MCL code. On one hand, the top-down development in the front-
end tool suite breaks the Scaffold code into gates that are chosen from the QGS. On the
other hand, the bottom-up development in the library designer tool generates optimized
MCL codes (in terms of gate or qubit counts) for each gate of the QGS. These two paths
meet each other in the back-end, where high-level gates are scheduled, placed and routed
on the 2D tiled architecture, and then each high-level gate as well as move operation are
replaced by the appropriate MCL code in order to build the circuit MCL. Note that the path
that goes through Mini language processing and quantum library design tools is an offline
process that executes independently of the quantum algorithm.

i
i

“book-chapter” — 2015/6/7 — 20:58 — page 11 — #11 i
i

i
i

i
i

Computer-Aided Design for Next-Generation Quantum Computing Systems 11

A key benefit of the meet-in-the-middle approach is that the efficiency of the top-down
(forward) synthesis approach and the accuracy of the bottom-up physical design approach
are simultaneously realized. Additionally, the design tool scalability is ensured by hiding
from the algorithm and code developers the physical design details of implementing logic
operations (and moves) in a given PMD for given QC and QEC protocols. Ease of verifica-
tion of the design by separating front-end transformations from gate library verification is
another benefit.

The NQCS toolbox relies on a set of well-defined use-cases, whose purpose is to cap-
ture system functions that affect the interface between the system and the outside world.
Well-written use-cases offer the analysis, development, testing, and documentation teams
an invaluable guidebook. Precisely, a use-case is a formalized story that describes how
someone procedurally interacts with a proposed software system. In the rest of this sec-
tion, we develop use-case diagrams for various components in the NQCS Toolbox. These
components are those that an expert quantum programmer/researcher can utilize in order
to write a given quantum algorithm and subsequently transform the written program into
a machine-level code for a given combination of PMD, QEC, and QC. The rest of this
section provides detailed descriptions for functions of the top-level diagram along with the
appropriate use-cases.

4.3. Front-end

A given quantum algorithm is written in Scaffold [10]. The specification of Scaffold al-
lows two kinds of modules for describing a quantum algorithm: (1) normal modules which
are written with quantum variables and gates, along with classical or quantum control struc-
tures, and (2) Classical-to-Quantum-Gate (Classical code To Quantum Gate (CTQG)) mod-
ules. CTQG modules are a key feature of Scaffold that allows a programmer to express a de-
sired quantum functionality using classical programming. Rather than viewing everything
in terms of quantum gates, CTQG modules allow programmers to describe the functional-
ity of some parts of the algorithm from a higher perspective. They are written as classical
C-like code, with the intent of being synthesized to reversible logical circuits that are com-
patible with a quantum circuit. Normal and CTQG modules are suitable for specifying the
quantum and oracle parts of the algorithm, respectively. These two parts are distinguish-
able by the Scaffold grammar. In addition to the quantum and classical modules, there are
various control structures that allow the programmer to identify the control flow of Scaffold
code. More details are available in Table 1.

After parsing the Scaffold code (cf. function 1.1 of Figure 3), function 1.2 of Fig-
ure 3 first analyzes the Scaffold code, identifies normal and CTQG modules, and forwards
them along with the required control structures through the appropriate path in the design
flow to the corresponding compilation/synthesis tools. CTQG modules are synthesized by
a reversible logic synthesis tool (cf. function 1.4 of Figure 3), e.g., Reed-Muller Decision
Diagram Synthesis (RMDDS) [13]. The normal modules are fed into the quantum compila-
tion tool (cf. function 1.3 of Figure 3), which executes in parallel to the reversible synthesis
path. The tool is responsible for synthesizing quantum logic gates into QGS. In the first
step (not shown in the figure), the quantum compiler unrolls the loops, evaluates condi-
tions, and interprets the gate sequence and control path described by the programmer. In

i
i

“book-chapter” — 2015/6/7 — 20:58 — page 12 — #12 i
i

i
i

i
i

12 Shafaei, Dousti, Pedram

Table 1. The detailed description for the “Implement Quantum Algorithm in Scaffold”
use-case .

Use-case name Implement Quantum Algorithm in Scaffold
Related requirements Requirement 1 in Section 3
Goal in context The NQCS Toolbox provides an integrated development environ-

ment to specify a quantum algorithm and subsequently transform
and optimize the quantum program into the machine-level code.
Scaffold is the NQCS quantum programming language.

Preconditions Must have a detailed specification of the algorithm, specifying the
different parts in quantum circuit or high-level (e.g., oracle, etc.)
flow.

Successful end conditions A new Scaffold program is developed.
Fail end conditions -
Primary actors Quantum Programmer
Secondary actors -
Trigger The quantum programmer starts writing the Scaffold program.
Main flow Action

(Step #1) Quantum Programmer studies the algorithm in detail.
(Step #2) Quantum Programmer decides on which parts to specify
using classical code and which parts to write at quantum gate
level.
(Step #3) Quantum Programmer uses the available language fea-
tures and syntax to implement the specifications.
(Step #4) Quantum Programmer must be aware of the decision’s
implications and possible implementation costs (e.g., large non-
reversible logics that use a lot of ancilla to be made reversible,
arbitrary rotations, etc.)

the second step (again not shown), the quantum compiler implements arbitrary rotations in
terms of QGS gates by using the Solovay-Kitaev algorithm [14]. In this case, a sequence of
machine instructions must be generated to approximate the arbitrary rotation to the required
precision. Analysis in [15] shows that static code generation can, in some cases, lead to a
terabyte of code to realize needed rotations. Further, some rotation angles are unknown un-
til the runtime, requiring dynamic code generation. Dynamic code generation, however, can
result in significant tradeoffs in terms of the execution time overhead versus code quality
(code size and rotation precision). Moreover, dynamic code generation will be performed
on classical (non-quantum) computing resources, which may or may not have a clock speed
advantage over the target quantum technology.1 In [15], the design space formed by these
trade-offs of dynamic versus static code generation is explored. They also introduced sev-
eral techniques to provide smoother trade-offs for dynamic code generation and evaluate
the viability of options in the design space. Note that this step produces complex quantum
gates such as multiple-control Toffoli gate. The output of the second step is Hierarchical

1For example, although modern classical processors run at gigahertz clock speeds, operations on trapped
ions run at kilohertz speeds, whereas superconducting qubits run at gigahertz speeds.

i
i

“book-chapter” — 2015/6/7 — 20:58 — page 13 — #13 i
i

i
i

i
i

Computer-Aided Design for Next-Generation Quantum Computing Systems 13

1.1

Parse

Scaffold

Code

Normal

Modules

AND

CTQG

Modules

1.4

Reversible

Logic

Synthesis

1.6

Fault-

Tolerant

Mapping

AND

Second Level - Quantum Compilation (Frontend)

1.2

Analyze/Split

Scaffold Code

1.5

Conjoin

Normal and

CTQG

Modules

QASM-H
1.3

Quantum

Compilation

QASM-H

(4.0) Ref.

Quantum

Physical

Design

(5.0) Ref.

 Resource

Calculation

Scaffold

Code

QGS

QASM-H QASM-HF

Figure 3. EFFBD of NQCS front-end.

Quantum Programmer

NQCS front-end

Compile

Synthesizer

Scaffold

Analyzer/Parser

Fault-Tolerant

Mapper

Conjoiner

Figure 4. NQCS front-end use-case diagram.

Quantum Assembly Language (H-QASM) (see Section 5).
Compiled normal and CTQG modules are merged together by a conjoiner tool (cf.

function 1.5 in Figure 3). The conjoiner is responsible for putting the codes together and
resolving hybrid, nested instantiations, viz., instantiation of a classical module inside a
quantum. To manage the size of output, the conjoiner avoids flattening the output and
maintains the hierarchical structure (instantiation of modules inside the other modules).
Circuit optimizations, similar to [16] and [17], may also be performed by the conjoiner tool
to further optimize the quantum circuit. Finally, a fault-tolerant mapping tool (cf. function
1.6 in Figure 3) takes the output of the conjoiner, and maps it to gates in the QGS. The
output of the fault-tolerant mapper is the HF-QASM representation. Based on the above
discussion, the frond-end use-case diagram is shown in Figure 4, and the front-end actions
are summarized in Table 2.

4.4. Library Designer

The purpose of the library designer is to design the internal structure of a tile and the 2D
tiled architecture, and to generate a library of gate models.2 The library designer comprises

2This model includes MCL code, delay, and error rate for each QGS, move operation, and MCL code for
applying syndrome extraction.

i
i

“book-chapter” — 2015/6/7 — 20:58 — page 14 — #14 i
i

i
i

i
i

14 Shafaei, Dousti, Pedram

Table 2. The detailed description for the “Compile” use-case .

Use-case name Compile
Related requirements Requirement 3 in Section 3
Goal in context The Scaffold program is compiled into HF-QASM representa-

tion.
Preconditions The Scaffold program should pass the verification step.
Successful end conditions A new HF-QASM is generated.
Fail end conditions Compiler generates a list of errors including the location and type

of the error.
Primary actors Quantum Programmer
Secondary actors -
Trigger The quantum programmer asks the NQCS to compile the Scaffold

program.
Main flow Action

(Step #1) The Quantum Programmer asks the NQCS Toolbox to
compile the Scaffold program.
(Step #2) The Scaffold program is parsed, and split into normal
and CTQG modules (cf. function 1.2 in Figure 3).
(Step #3) CTQG modules are synthesized to H-QASM using a
reversible logic synthesis tool.
(Step #4) Normal modules are compiled into H-QASM using the
Quantum Compiler.
(Step #5) CTQG and normal H-QASM files are conjoined to pro-
duce the final H-QASM representation.
(Step #6) The H-QASM representation is transformed into the
HF-QASM representation.
(Step #7) HF-QASM serves as input to other tools including the
quantum physical design tool or the resource calculation tool.

of two stand-alone tools:

1. The Mini language processor, shown in Figure 5: The input to the Mini language
processor is a set of XML-based “Mini languages”, which describe the PMD, the
QC protocol, and the QEC code. The Mini Language processor produces a QASM
description file for each gate of the QGS using the native instructions of the PMD.

2. The quantum tile factory designer, shown in Figure 6: This tool implements each gate
of the QGS in a fault-tolerant manner, attaches the syndrome extraction circuit to the
output(s) of the gate, and places the resultant quantum circuit into the architectural
tile. The MCL code for the QGS gate being fully realized in the tile is then generated.

After appropriate high-level transformations, the quantum circuit is represented as a
QIDG (function 3.1 in Figure 6), in which nodes represent (assembly) instructions and
edges capture data dependency between operands of the instructions. To capture the quan-
tum no-cloning theorem, which forbids fan-out in quantum circuits, a pre-processing step is
implemented on the QIDG to resolve the multiple read dependencies between instructions

i
i

“book-chapter” — 2015/6/7 — 20:58 — page 15 — #15 i
i

i
i

i
i

Computer-Aided Design for Next-Generation Quantum Computing Systems 15

2.1

Check PMD

Rules

2.5

Check QEC

Rules

AND

2.2

Construct

PMD

2.3

Check QC

Rules

2.6

Parse

QASM files

AND

2.4

Circuit

Construction/

Optimization

AND

2.7

Create Mini

Language

Library

Mini Languages

Second Level - Mini Language Processing

(3.0) Ref.

Quantum

Library

Design

QGS

Figure 5. EFFBD of NQCS Mini language processor.

3.3

Instruction

Scheduling

3.4

Instruction

Placement

3.5

Physical

Qubit

Routing

Machine Description

& Protocol Libraries

3.1

QIDG

Generation

QIDG

3.2

No-cloning-

based

Preprocessing

LPLP

LP

3.6

Timing

Simulation

Second Level – Quantum Tile Factory Design

LP

LP

3.7

ULB

Characterization

/Evaluation

For each gate in QGS

(2.0) Ref.

Mini

Language

Processing

(4.0) Ref.

Quantum

Physical

Design

Figure 6. EFFBD of NQCS quantum tile factory designer. LP denotes a loop in the EFFBD.

(function 3.2 in Figure 6). In the next step, the instructions are scheduled (function 3.3
in Figure 6) and placed (function 3.4 in Figure 6) on the quantum fabric, and the qubits
are routed (function 3.5 in Figure 6). Scheduling, placement, and routing problems in the
context of quantum computing are defined as:

• Scheduling: Given a QIDG, the scheduling problem is to reduce the resource pres-
sure (e.g., the number of concurrent instructions) while minimizing the total latency
of the circuit.

• Placement: Given a total ordering of the instructions on the circuit (as the output of
the instruction scheduling step), the placement problem is to assign physical (logical)
qubits and instructions (operations) to the cells (tiles) such that the communication
time (or total latency of the computation) is minimized.

• Routing: Given the position of each qubit and the instruction schedule, the qubit
routing problem is to minimize the total routing time.

i
i

“book-chapter” — 2015/6/7 — 20:58 — page 16 — #16 i
i

i
i

i
i

16 Shafaei, Dousti, Pedram

Primitive cell

(cell)
Tile

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Tiled

Architecture

Figure 7. A 2×2 tile-based architecture in superconducting PMD, where each tile is a 4×4
cell.

In the last step, the optimal size of the tile is determined such that various fault-tolerant
realizations of required quantum instructions can be implemented in any tile in the fabric
with acceptable latency and without any resource waste. We refer to this tile as Universal
Logic Block (ULB). When this optimal tile size is known, the tool generates the MCL code
for each gate of the QGS. For circuits coded with block QEC, the proposed algorithms
have been implemented as a quantum Computer Aided Design (CAD) tool called Quantum
Universal logic block Factory Designer (QUFD) [8]. Timing simulation (cf. function 3.6 of
Figure 6) is used in QUFD tool to verify the generated MCL code.

The quantum tile factory designer is responsible for designing two types of high-level
(architectural) ULBs.

• Computing Universal Logic Block (CULB): This tile is capable of performing
fault-tolerant gate operations on one or two logical qubits. It can also perform quan-
tum error correction on a single logical qubit. The type of error correction is specified
as an input by the QEC code.

• Memory Universal Logic Block (MULB): This tile can store several idle logical
qubits. It periodically performs QEC on the logical qubits (one after another) in
order to maintain their fidelity. This is based on the fact that idle qubits need to be
refreshed approximately once every 100 operation cycles in concatenated codes [18].
Therefore, applying QEC on idle qubits in a round-robin manner is adequate.

To achieve a regular tiled architecture for the front-end tool suite, width and height of
the MULB should be the same as those of the CULB. Hence, the number of idle logical
qubits that the MULB can store is a function of CULB size, idle qubit de-coherence rate,
and the delay of applying a QEC on a logical qubit. An example of the tiled architecture
for the superconducting PMD is shown in Figure 7.

i
i

“book-chapter” — 2015/6/7 — 20:58 — page 17 — #17 i
i

i
i

i
i

Computer-Aided Design for Next-Generation Quantum Computing Systems 17

QEC Expert

Mini Language Processor

Rule Checker

Mini Language

Generator

Encoder/Decoder

Circuit Constructor

PMD Layout

Constructor

QC Expert

PMD Expert

Figure 8. NQCS Mini language processor use-case diagram.

Table 3. The detailed description for the “Mini language” use-case.

Use-case name Mini language
Related requirements Requirement 2 in Section 3
Goal in context A new PMD, QC protocol, or QEC code is described by the PMD

expert, QC expert, or QEC expert respectively
Preconditions All XML and QASM files are available, and are specified cor-

rectly.
Successful end conditions A new PMD, QC protocol, or QEC code is integrated into NQCS.
Fail end conditions The PMD, QC protocol, or QECC specification is rejected.
Primary actors PMD expert, QC expert, or QEC expert
Secondary actors -
Trigger The PMD expert, QC expert, or QEC expert asks the NQCS to

process the new PMD specification, QC protocol, or QEC code,
respectively.

4.4.1. Mini language processor

Specifying PMD, QC and QEC in a simple language format provides the ability to mod-
ify/extend the existing PMD, QC and QEC protocols. It also provides the flexibility to
capture new PMDs, QC, or QEC protocols even after the design of the quantum Toolbox.
Considering these objectives, we need to devise a descriptive language for PMD, QC and
QEC to be used in this process. The designed language should be easy to use by the PMD,
QC and QEC developers (Figure 8 and Table 3). Yet, it should be expressive, concise, and
robust. For these reasons, we have opted to use the XML language to specify the PMD,
QC and QEC protocols. In addition to XML, some type of quantum circuit description
language is needed to specify the required QEC protocols viz. to provide a description of
the encoding and decoding circuitry. QASM or Scaffold may be used for this purpose.

i
i

“book-chapter” — 2015/6/7 — 20:58 — page 18 — #18 i
i

i
i

i
i

18 Shafaei, Dousti, Pedram

The definition of a PMD is based on primitive cells that are specific to that PMD. The
quantum fabric can be generated by replicating these primitive cells and considering links
between the neighboring cells. In addition to these layout definitions, the set of native in-
structions that can be implemented in each of the PMDs is specified in an XML file. For
the QC definition language, native instructions of each PMD are replaced with a series of
native and control instructions to increase their fidelity. These replacements are defined
using an XML file. To capture different QEC schemes (block vs. topological), we suggest
different definition languages for different QEC schemes. These definition languages in-
clude the basic parameters specific to each coding scheme. In addition to these parameters,
circuit implementation of basic operations, ancilla generation and parity check for differ-
ent coding schemes are also specified using augmented QASM files. Moreover, the NQCS
Toolbox considers two different paths for applying concatenated and topological QEC to a
quantum circuit.3 For EFFBD of the NQCS Mini language processor refer to Figure 5.

4.4.2. Circuit construction/optimization

A circuit construction/optimization tool [16] (cf. function 2.4 in Figure 5, and expansion in
Figure 9) is used in the Mini language processor. This tool finds optimized quantum circuit
realizations for compound gates (i.e., gates that require more than one native instruction
to be realized in the given PMD). The optimization objective may be the number of na-
tive instructions or the execution time for the compound gate operation. The tool relies
on a default Operation-to-Instruction (O2I) mapping tool, or O2I mapper for short, (func-
tion 2.4.1 in Figure 9) to compute and store in an O2I library the optimal realizations of
each basic operation in terms of native instructions in the given PMD. Optimal realization
means either the minimum number of native instructions or the shortest execution time.
The native instruction set for this tool are: (i) One-qubit operations (Rx, Ry, Rz, X , Y , Z,
S, T , H), and (ii) two-qubit operations (CNOT, CZ, Geometric, Controlled-Phase, Swap,
iSwap). After mapping the circuit into native instructions that are supported by the PMD,
some adjacent instructions may be redundant. Thus, the tool optimizes the circuit by using
quantum identity rules (function 2.4.2 in Figure 9) until no more optimizations are possible.
Figure 10 shows the construction of SWAP gate in various PMDs, obtained by the circuit
construction/optimization tool [16].

4.5. Back-end

The back-end tool suite comprises of a Quantum Physical Designer (QPD) tool, which
is shown in Figure 11 with its use-case model in Figure 12. The inputs to the QPD are
the HF-QASM representation, which is the output of the front-end tool suite, and tile de-
sign/tiled architecture along with gate models, which are outputs of the library designer.

3The proposed mini-language processor can easily handle any modifications to the encoding/decoding cir-
cuitry for a supported QEC - regardless of whether it is concatenated or topological code. On the other hand,
handling a new (and previously unseen) is a very challenging task - something that requires further research in
order to assess its feasibility and if so, ways of achieving it. We anticipate that a totally new QEC will require
changes to the NQCS toolbox that go beyond the mini-language processor and touch on other aspects of the
toolbox including the front- and back-end tools in potentially significant ways.

i
i

“book-chapter” — 2015/6/7 — 20:58 — page 19 — #19 i
i

i
i

i
i

Computer-Aided Design for Next-Generation Quantum Computing Systems 19

Better

Result?

Third Level – Circuit Construction/Optimization

(2.2) Ref.

Construct

PMD

AND

(2.3) Ref.

Check

QC Rule

(2.7) Ref.

Create Mini

Language

Library

2.4.1

O2I Mapper

2.4.2

Check

Identity

Rules

Go
No-Go

Optimized

Quantum Circuits

Figure 9. NQCS circuit constructor/optimizer.

ZRy(-π/2) Ry(π/2) Z

Ry(-π/2) Ry(π/2)

ZRy(-π/2) Ry(π/2)

G(-π/2)G(-π/2) G(-π/2) Ry(π/2)

Rx(3π/2)

Rx(π/2)

Rz(3π/2) Ry(π/2)

Ry(3π/2)Rz(3π/2) Rx(3π/2)

P(π/2)

Rz(π/2)

Rz(π/2) Z iSW(π/2)

P(π/2)

=

=

=

=

(a) (b)

(c)

(d)

(e)

ZRx(π/2)

P(π)

Rx(3π/2)Rz(π/2) Z

Rx(π/2) Rz(3π/2)Rx(3π/2)Rz(π/2)

ZRx(π/2) Rz(3π/2)Rx(3π/2)

Figure 10. SWAP gate construction in (a) photonics, (b) neutral atom, (c) quantum dot, (d)
trapped ion, and (e) superconducting PMDs [16].

The HF-QASM representation is translated into a QIDG, which is subsequently used dur-
ing scheduling, placement, and routing steps (see next paragraph). After scheduling, place-
ment, and routing steps, a new HF-QASM is generated, which includes information about
the operation locations (the placement coordinates of the tile in the quantum fabric where
each operation takes place) as well as qubit movements (the steps that specify how logical
qubits are routed between tiles). By substituting fault-tolerant quantum gates and move
operations with respective MCL codes, this HF-QASM is translated into the circuit MCL
code. Applying syndrome extraction to this circuit based on operation, movement, and
stall error rates is also the responsibility of back-end when generating the final circuit MCL
code.

Scheduling, placement, and routing problems for the back-end are defined in the same
way as those for the library designer. However, the back-end deals with logical qubits and
operations, as opposed to the library designer that deals with physical qubits and opera-
tions. The library designer receives the physical realization of a basic operation, schedules
and places native instructions on the basic cells of the quantum fabric, and routes physical
qubits between these cells in order to generate the MCL code for the given operation. On
the other hand, the input to the back-end is a circuit potentially composed of a very large

i
i

“book-chapter” — 2015/6/7 — 20:58 — page 20 — #20 i
i

i
i

i
i

20 Shafaei, Dousti, Pedram

4.3

Operation

Scheduling

4.4

Operation

Placement

4.5

Logical

Qubit

Routing

QASM-HF

4.1

QIDG

Generation

QIDG

Circuit MCL

4.2

No-cloning-

based

Preprocessing

LPLP

LP

4.7

MCL

Generation

Second Level – Quantum Physical Design (Backend)

(1.0) Ref.

Quantum

Compilation

AND

(3.0) Ref.

Quantum

Library

Design

Tile Design &

Tiled Arch.

Gate/Special-Op

MCLs

4.6

Timing

Simulation

QASM-PR

Figure 11. EFFBD of NQCS back-end.

Quantum Programmer

NQCS back-end

No-cloning-based

Preprocessor

Physical Designer
QIDG Generator

Timing Simulator

MCL Generator <<include>>

Figure 12. NQCS back-end use-case diagram.

number of basic operations on logical qubits (i.e., the HF-QASM representation). The MCL
generation of the circuit in the back-end tool proceeds by scheduling and placing these op-
erations on the 2D tiled architecture, routing logical qubits between tiles, and replacing
various operations and moves with respective MCL codes. Another key difference arises
from the scale (size) of the input file (problem). While the number of native instructions in
a fault-tolerant implementation of a basic operation can vary from hundreds to thousands of
instructions, a HF-QASM representation may contain (tens of) millions of operations [19].
To handle this huge input size and generate a scalable back-end, partitioning techniques on
QIDG and tiled-architecture are necessary. Using partitioning techniques, the number of
operations per partition can be limited to a reasonable number for placement and routing
algorithms. The required steps for MCL generation and timing simulation are summarized
in Table 4 and Table 5.

i
i

“book-chapter” — 2015/6/7 — 20:58 — page 21 — #21 i
i

i
i

i
i

Computer-Aided Design for Next-Generation Quantum Computing Systems 21

Table 4. The detailed description for the “Generate MCL” use-case .

Use-case name Generate MCL
Related requirements Requirement 4 in Section 3
Goal in context Machine Control Language (MCL) is generated.
Preconditions The Scaffold program should be compiled with no error.
Successful end conditions MCL for the quantum algorithm is generated.
Fail end conditions An error message is generated.
Primary actors Quantum Programmer
Secondary actors -
Trigger The quantum programmer asks the NQCS to generate the MCL

code.
Included Cases Simulate Timing
Main flow Action

(Step #1) For each QGS operation as well as special-ops an MCL
is generated.
(Step #2) [include::Simulate Timing] Timing of each MCL is ver-
ified by timing simulation.
(Step #3) The HF-QASM representation is translated into MCL
code based on a 2D tiled architecture and MCL codes from step
1.
(Step #4) [include::Simulate Timing] Timing of the MCL code is
verified by timing simulation.

4.5.1. Timing Simulation

After generating the MCL code by the back-end tool suite or in the case of construct-
ing MCL code for each fault-tolerant quantum gate by the Quantum Universal logic block
Factory Designer (QUFD), scheduling, placement, and routing steps are visualized by a
timing simulation tool. The main function of timing simulation is to extract timing infor-
mation, i.e., starting execution time of each instruction, latency of routing qubits, and the
delay of the quantum circuit. As a byproduct, timing simulation may work as a verifier
which examines the correctness (and possibly the efficiency considering different metrics)
of scheduling, placement, and routing solutions. Table 5 summarizes the description.

4.6. Resource Calculation (RC)

The RC function, as shown in Figure 13 with use-case diagram in Figure 14, has been
automated in the NQCS Toolbox. After compiling the Scaffold code, the HF-QASM is
automatically analyzed to produce the number of basic operations, and the estimated paral-
lelism and communication cost for routing the qubits (cf. function 5.1 in Figure 13). The
error rate and delay information for basic operations are also automatically extracted from
the machine description and protocol libraries (cf. function 5.2 in Figure 13). The num-
ber of gates and the time needed to perform quantum error correction that yields a desired
error rate is expressed as a series of recursive functions in the automatic Error Correction
Code (ECC) analysis tool (cf. function 5.3 in Figure 13). If the error threshold is met, the

i
i

“book-chapter” — 2015/6/7 — 20:58 — page 22 — #22 i
i

i
i

i
i

22 Shafaei, Dousti, Pedram

Table 5. The detailed description for the “Simulate Timing” use-case.

Use-case name Simulate Timing
Related requirements Requirement 6 in Section 3
Goal in context Latency of a PMD-based specification (i.e., MCL of a QGS op-

eration, Special-op, or the circuit) is determined. Circuit will be
visualized for possible actions from quantum programmer.

Preconditions MCL code is generated successfully.
Successful end conditions Timing information and other related information for the MCL

code is displayed.
Fail end conditions An error message is displayed.
Primary actors Quantum Programmer
Secondary actors -
Trigger The quantum programmer asks the NQCS to run the timing sim-

ulator.

ECC level/distance calculation tool (cf. function 5.4 in Figure 13) computes the concate-
nation level (in case of concatenated codes), or the code distance (in case of surface codes)
based on (i) the number of basic operations that comes from function 5.1, (ii) the gate error
rates that come from function 5.2, and (iii) the functions that come from function 5.3. Fi-
nally, a resource calculation tool (cf. function 5.5 in Figure 13) combines these outputs, and
reports the number of physical qubits, number of physical gate operations, and number of
clock cycles required to execute the quantum algorithm. However, in the case that the error
rate of a quantum gate (after applying the QC protocol) is higher than the error threshold of
the QEC code, the given combination of PMD, QC, and QEC is not allowed (cf. function
5.6 in Figure 13). The required steps for PMD are summarized in Table 6.

As discussed in [19] in detail, a suite of Octave scripts has been provided that automat-
ically generates the resource estimates for a cross product of algorithms, PMDs, and error
correction techniques. For each quantum algorithm, the number of logical gates of each
type, the parallelization factor for these gates (how many gates of each type can be safely
scheduled in parallel), and the number of logical qubits are needed. Another required input
is information about each combination of PMD and control protocol. The required infor-
mation is the time of each gate type, the error of the worst gate, and error rate per unit of
time. For more information, please refer to [19].

5. Interface Specification

N2 diagram (or N×N interaction matrix) [12] is used in this section to identify interactions
or interfaces between major functions of the NQCS Toolbox from a system perspective.
This diagram is typically used to develop system interfaces. The N2 diagram can be taken
down into successively lower levels to the component functional levels. In addition to
defining the interfaces, the N2 diagram also pinpoints areas where conflicts could arise in
interfaces, and highlights input and output dependency assumptions and requirements.

The top-level N2 diagram for the NQCS Toolbox is depicted in Figure 15. In this
diagram, various NQCS functions are placed on the diagonal. The remainder of the squares

i
i

“book-chapter” — 2015/6/7 — 20:58 — page 23 — #23 i
i

i
i

i
i

Computer-Aided Design for Next-Generation Quantum Computing Systems 23

Costs &

Metrics

5.4

ECC Level/

Distance

Calculation

Machine Description

& Protocol Libraries

QASM-HF

AND

5.1

Quantum

Algorithm

Analysis

5.2

Physical Level

Characterizati

on

AND

Second Level – Resource Calculation

5.3

Error

Correction

Code Analysis

5.5

Resource

Calculation
(1.0) Ref.

Quantum

Compilation

AND

(2.0) Ref.

Mini

Language

Processing 5.6

Print

“Combination

not allowed”

Error

threshold

met?

Go

No-Go

Figure 13. EFFBD of NQCS Resource Calculation (RC).

Table 6. The detailed description for the “Calculate Physical Resources” use-case .

Use-case name Calculate Physical Resources
Related requirements Requirement 5 in Section 3
Goal in context Physical resources for a given HF-QASM, PMD, QC, and QEC

are calculated.
Preconditions HF-QASM is generated, and PMD, QC protocol and QEC code

are described.
Successful end conditions Physical resource calculation is displayed.
Fail end conditions An error message (“combination not allowed”) is displayed.
Primary actors Quantum Programmer
Secondary actors PMD Expert, QC Expert, QEC Expert
Trigger The Quantum Programmer asks the NQCS to launch the resource

calculator.
Main flow Action

(Step #1) Scaffold program is compiled into HF-QASM in order
to find the number of basic operations, and the estimated paral-
lelism and communication cost.
(Step #2) Error rate and delay information of basic operations are
extracted from PMD and QC protocols.
(Step #3) Error threshold is extracted from QEC code.
(Step #4) If the error threshold is met, concatenation level or
the code distance is computed, and then the number of physical
qubits, number of physical gate operations, and number of clock
cycles required to execute the quantum algorithm are reported.
(Step #5) Otherwise, the given combination of PMD, QC, and
QEC is not allowed.

in the N x N matrix represents the interface inputs and outputs. A blue geometric shape at
the intersection of a row and a column contains a description of the interface between the
two functions represented on that row and that column. A letter “L” (“P”) at the intersection

i
i

“book-chapter” — 2015/6/7 — 20:58 — page 24 — #24 i
i

i
i

i
i

24 Shafaei, Dousti, Pedram

Quantum Programmer

NQCS resource calculator

Resource CalculatorAlgorithm Analyzer

QEC/QC/PMD

Validity Checker

Physical Resource

Characterizer

QEC Analyzer

QEC Expert

QC Expert

PMD Expert

Figure 14. NQCS Resource Calculation (RC) use-case diagram.

of a row and a column indicates an interface that acts on logical (physical) qubits/gates
between the two functions. For example, the Fault-Tolerant (FT) mapper has a logical
interface, which is called HF-QASM, with the resource calculation tool. Where no shape
appears, there is no interface between the respective functions.

The rest of this section explains the main interfaces of the NQCS Toolbox in more
details. The interface examples are for demonstration purposes only.

1. Scaffold code: This language is developed as a Quantum Programming Language
(QPL). The details of Scaffold are presented in a separate document [10]. As a
working example, we can consider the Scaffold code shown in Figure 16, which is
the cat state preparation circuit.

2. H-QASM: This representation is the output of the reversible logic synthesis tool
as well as the quantum compiler, and the input to the fault-tolerant mapper. The
main difference between H-QASM and the standard QASM [11] is the ability to
use hierarchical design, which is important for complex circuits. More precisely,
H-QASM adds the following features to the standard QASM representation.

• An entity called “module” which defines a quantum sub-circuit. The sub-circuit
then can be reused several times.

• Any module or gate can be repeated several times by indicating the “repeat”
keyword before the respective module/gate.

Although modular design simplifies the design process, the aforementioned features
are vital to maintain the code size reasonable. Figure 17(b) shows the H-QASM
grammar.

i
i

“book-chapter” — 2015/6/7 — 20:58 — page 25 — #25 i
i

i
i

i
i

Computer-Aided Design for Next-Generation Quantum Computing Systems 25

Scaffold

Parser

Quantum

Compiler

Reversible

Synthesizer

FT Mapper

Mini

Languages

Processor

Quantum

Library

Designer

QIDG

Generator

Physical

Designer

MCL

Generator

Resource

Calculator

Backend

Frontend

Gate/Special-Op MCLs

Tile Design & Tiled Arch.

Machine Description & Protocol Libraries

QIDG

HF-QASM

H-QASM

P

L

P: Physical-level

L: Logical-level

L

Legend:

Scaffold Modules

L L

L

L

L

P P

L

L

Figure 15. N2 Diagram of NQCS Toolbox.

#define N 4

module cat (qbit *bit, const int n) {
H(bit[0]);
for (int i=1; i < n; i++) {

CNOT(bit[i], bit[i-1]);
}

}

int main () {
qbit bits[N];
cat(bits , N);
return 0;

}

Figure 16. The Scaffold code for the cat state preparation circuit

3. HF-QASM representation: This file is the output of the fault-tolerant mapper.
HF-QASM inherits all features of H-QASM; however, it limits the gate sets to
only fault-tolerant gates. The grammar of HF-QASM is shown in Figure 17(c) [9].
HF-QASM allows the fault-tolerant mapper to define new modules (or gates) such as
Toffoli gates. The resultant file should provide the implementation of all gates using
only fault-tolerant gates (i.e., QGS). The HF-QASM code for the cat state preparation
circuit generated by the Scaffold compiler is shown in Figure 18.

i
i

“book-chapter” — 2015/6/7 — 20:58 — page 26 — #26 i
i

i
i

i
i

26 Shafaei, Dousti, Pedram

name→ [a-z,A-Z]+[a-z,A-Z,0-9]*
num→ [1-9][1-9]*
whitespace→ \n | \r | \t |
comment→ # .* (\n | <EOF>)

(a)

start→ (module)* main
main→ module main { body }
module→ module name (param_list) { body }
param_list→ param (,param)*
param→ qubit (*)? name
body→ (def ;)+ (gate;)+
def → qubit ([num])? name
gate→ (one_qubit_gate | multi_qubit_gate | call)
one_qubit_gate→ (H|X|Y|Z|S|S†|T|T†|Prep0|MeasX|MeasY|MeasZ) (arg)
multi_qubit_gate→ (Toffoli (ctrlArray, arg)) | (Fredkin ((ctrlArray,)? arg, arg))
call→ name (call_list)
call_list→ arg (, arg)*
arg→ name | name[num]
ctrlArray→ arg (, arg)*

(b)

start→ (module)* main
main→ module main { body }
module→ module name (param_list) { body }
param_list→ param (,param)*
param→ qubit (*)? name
body→ (def ;)+ (gate;)+
def → qubit ([num])? name
gate→ (one_qubit_gate | two_qubit_gate | call)
one_qubit_gate→ (H|X|Y|Z|S|S†|T|T†|Prep0|MeasX|MeasY|MeasZ) (arg)
two_qubit_gate→ CNOT (arg, arg)
call→ name (call_list)
call_list→ arg (, arg)*
arg→ name | name[num]

(c)

Figure 17. (a) Definition of tokens. (b) H-QASM grammar. (c) HF-QASM grammar
[9]. Regular expression is used to simplify the grammar specification. Note that the star
character (*) used for the param variable is a terminal. It determines whether a parameter
is an array or not (similar to the C language).

4. QIDG: After processing the HF-QASM, a quantum instruction dependency graph
(QIDG) is generated. Instruction dependencies avoid Write After Read (WAR), Write
After Write (WAW), and Read After Write (RAW) hazards. In addition, the quantum
no-cloning theorem adds another dependency to this graph that avoids multiple reads
of a qubit at the same time. This graph is used in scheduling, placement and routing
steps of the quantum physical designer.

i
i

“book-chapter” — 2015/6/7 — 20:58 — page 27 — #27 i
i

i
i

i
i

Computer-Aided Design for Next-Generation Quantum Computing Systems 27

module cat_4 (qbit* bit) {
H (bit[0]);
CNOT (bit[1] , bit[0]);
CNOT (bit[2] , bit[1]);
CNOT (bit[3] , bit[2]);

}

module main () {
qbit bits[4];
cat_4 (bits);

}

Figure 18. The HF-QASM code for the cat state preparation circuit

5. Machine Description and Protocol Libraries: Mini languages specify the target
physical machine description, applied quantum control scheme and quantum error
correction code in the quantum circuit. By fast processing of this information, it is
possible to produce basic estimates about performance metrics of each gate in the
quantum circuit. These estimates contain the number of native instructions needed
to implement each gate and rough estimates of the total latency and error probability
of their physical implementation. These estimates can be used to derive the baseline
resource estimate of the quantum circuit.

6. Tile Design and Tiled Architecture: Quantum library designer examines different
tile sizes and tile architectures to find the best tile architecture in terms of the quan-
tum circuit performance metrics. The tile architecture specifies the size of the tiles,
location of the tiles and topology of the whole fabric. It is used in the back-end for
scheduling, placement and routing of logical qubits. Gate models specify the perfor-
mance metrics, i.e., latency and error probability, of the required gates in the quantum
circuit.

7. MCL code: Machine control language code specifies the lowest level control com-
mands for the target quantum circuit.

6. Verification

Verification of a product shows proof of compliance with requirements — that the product
can meet each shall statement as proven through performance of a test, analysis, inspection,
or demonstration. More precisely, verification is answering to the following question: Does
the Toolbox perform what it claims to do correctly?4. To manage the complexity and en-
sure scalability, we have opted to break the verification process of the NQCS Toolbox into
smaller verification processes which includes “verification of algorithm to QPL”, “verifica-
tion of Toolbox design requirements”, and “verification of QPL to MCL”. The difference

4On the other hand, validation of a product shows that the product accomplishes the intended purpose in
the intended environment — that the product meets the expectations of the customer and other stakeholders
as shown through performance of a test, analysis, inspection, or demonstration. Validation is answering to the
following question: Is the designer claiming that the Toolbox does the right things?

i
i

“book-chapter” — 2015/6/7 — 20:58 — page 28 — #28 i
i

i
i

i
i

28 Shafaei, Dousti, Pedram

1.0

Quantum
Compilation
(Frontend)

2.0

Mini Language
Processing

3.0

Quantum Tile
Factory Design

4.0

Quantum
Physical Design

(Backend)

Scaffold
Code

QASM-HF

Mini Languages
(PMD, QEC, QC)

Machine Description
& Protocol Libraries

Tile Design &
Tiled Arch.

Circuit MCL
AND

Costs &
Metrics

Top Level

OR

5.0

Baseline
Resource

Estimation

QGS

Gate/Special-Op
MCLs

AND

MCL

BRE

Second Level - Verification Process

6.1

Specification
Validation

6.2

Implementation
Verification

6.3

Error Threshold
Check

Scaffold
Code

Valid
Circuit

Valid
Scaffold

Valid
MCL

Circuit MCL

Is Scaffold
Valid Is MCL Valid

6.4

Print “Scaffold
code is not

valid”

6.5

Print “MCL
code is not

valid”

Go

No-Go

Go

No-Go

6.0

Verification
Process

Valid
Circuit (4.0) Ref.

Quantum
Physical
Design

QASM-HF

1.1

Parse Scaffold
Code

Normal
Modules

AND

C2QG
Modules

1.4

Reversible
Logic Synthesis

1.6

Fault-Tolerant
Mapping

AND

Second Level - Quantum Compilation (Frontend)

1.2

Analyze/Split
Scaffold Code

1.5

Conjoin Normal
and C2QG
Modules

QASM-H
1.3

Quantum
Compilation

QASM-H

(4.0) Ref.
Quantum
Physical
Design

(5.0) Ref.
Baseline
Resource

Estimation

Scaffold
Code

QGS

QASM-H QASM-HF

Figure 19. EFFBD of NQCS verification.

between the first and third tasks in verification arises from the potential source of errors
in Scaffold code and the MCL code. More precisely, considering the manual process of
coding a quantum algorithm, the main problem in Scaffold code can arise from software
programming mistakes. In contrast, considering a given Scaffold code, errors in the MCL
code are the result of the mistakes in the Toolbox design and tool suite. In addition to these
mistakes, the MCL code should be verified to make sure that the error threshold of the ap-
plied QEC scheme is greater than the error probability of the PMD instructions considering
the QC scheme. The EFFBD of NQCS Toolbox verification process is shown in Figure 19.

6.1. Verification of algorithm to QPL

Quantum algorithm to QPL Verification (Table 7) requires that we provide a proof that the
QPL code correctly implements the desired algorithm. This is an extremely challenging
task that does not lend itself to an exact solution. In general, the problem of automatic
validation of a software program is intractable even in classical computing. Similarly, the
problem of automatic validation of a Scaffold code versus a given quantum algorithm is
intractable (and in fact un-decidable). A viable option is to run different benchmark circuits
and compare the outputs with expected (golden) results. Another option is to ask the QPL
programmer/user to provide a proof of the correctness for his code using formal methods
(although this may be a huge demand imposed on the user).

Verification for larger quantum circuits will be done through inspection. When pos-
sible, arguments will be constructed to show that small-input verification is indicative of
large-input cases. At the QPL level, we expect standard compiler techniques to emit code
that maintains correctness at large scale. Such techniques have been shown to be behav-
iorally correct over the long history of compiler usage for large-scale classical programs
and inputs. Since each algorithm is only one or two thousand lines of Scaffold code, we
expect verification by inspection to be a reasonable approach.

In this way, we reduce the number of casual errors introduced by software programmers.

i
i

“book-chapter” — 2015/6/7 — 20:58 — page 29 — #29 i
i

i
i

i
i

Computer-Aided Design for Next-Generation Quantum Computing Systems 29

Table 7. The detailed description for the “Verify Implemented Algorithm” use-case .

Use-case name Verify Implemented Algorithm
Related requirements Requirement 7 in Section 3
Goal in context To make sure that the Scaffold program satisfies all the require-

ments of the quantum algorithm.
Preconditions The Scaffold program should be given.
Successful end conditions The Scaffold program has a reasonable chance of correctly im-

plementing the quantum algorithm.
Fail end conditions The Scaffold program is not verified at all.
Primary actors Quantum Programmer
Secondary actors -
Trigger The quantum programmer asks the NQCS to verify the Scaffold

program.
Main flow Action

Debugging.

6.2. Verification of Toolbox design requirements

Each Toolbox requirement (cf. Section 3) should be evaluated by one specific testing strat-
egy to make sure that each requirement is properly addressed. Excluding the topics dis-
cussed in the other sections leads to the following items:

1. The NQCS Toolbox shall allow the quantum programmer to write the quantum algo-
rithm in Scaffold providing quantum data types, quantum operations, classical oper-
ations, and appropriate control flow structures. This can be evaluated by “demonstra-
tion” — by expressing several quantum algorithms by Scaffold.

2. The NQCS Toolbox shall enable (1) PMD expert to describe a new PMD architecture,
along with error rates and latencies for various quantum instructions, (2) QEC expert
to describe a new quantum error correction code, and (3) QC expert to describe a new
quantum control protocol. These requirements can be evaluated by “demonstration”
— by handling different QCs, QECs, and PMDs.

3. The NQCS Toolbox shall provide an efficient quantum compiler for the quantum
programmer. This can be checked by comparison of compiler outputs for several
well-defined problem sizes with the expected outputs.

4. The NQCS Toolbox shall provide a set of software utilities such as a timing simulator
as the NQCS quantum programming environment. This requirement can be verified
by “demonstration” — (1) by manual output comparison for several specific small
cases, and (2) by automatic output comparison for many large test vectors with known
results.

6.3. Verification of QPL to MCL

The goal of this step is to ensure that the generated MCL code is a valid realization of
the Scaffold code on the target PMD. We plan to divide this verification task into three

i
i

“book-chapter” — 2015/6/7 — 20:58 — page 30 — #30 i
i

i
i

i
i

30 Shafaei, Dousti, Pedram

subtasks: (i) verification of the HF-QASM against the Scaffold code, (ii) verification of the
FT gate library, and (iii) verification of the MCL code against HF-QASM.

• Different parts of the Scaffold code may follow different synthesis/compilation paths
to be transformed into the HF-QASM. This motivates us to take different verification
approaches for these parts.

• Reversible circuits can be reduced to conventional AND-OR-NOT circuits for
purposes of verification. As a result, for the classical modules and overall con-
trol flow, classical verification algorithms and tools similar to Mentor Graphics
QuestaSim5 can be used. Additionally, equivalence checking algorithms for
reversible circuits can be used [20]. Equivalence checking is a common term
in the published papers and is used to check two circuits (or a circuit vs. a
truth-table).

• For standard quantum modules such as quantum Fourier transform or realization
of arbitrary rotations using the Solovay-Kitaev algorithm [14], it is possible to
do the verification by construction because all of these quantum modules will
be replaced by HF-QASM blocks by using well-known (textbook) algorithms
that have analytical proof of correctness. As an alternative approach, recent
verification algorithms [21], [22] for quantum logic can also be used.6

• Generating the FT gate library needs both verification and error simulation steps.
Similar to the module responsible for generating FT gate library, related verification
and error simulation steps can be performed once, and cached to be reused later on
by the Toolbox as needed. It is, of course, impossible to simulate arbitrary quantum
circuits, or there would be no need to build quantum computers; but large pieces of
FT code can be simulated using efficient techniques.

• To verify the generated MCL code for each FT gate in the library against the trans-
formation matrix of the FT gate, we will exploit the Gottesman-Knill theorem [6]7.
More precisely, we will use [23]. This simulation can be used for an adequate num-
ber of input (stabilizer) states to guarantee correct behavior with reasonably high
probability. In a similar way, the classical modules (e.g., oracle functions) are es-
sentially reversible classical circuits; they can be checked for random computational
basis states to give probabilistic verification of their correctness.

5http://www.mentor.com/products/fv/questa/
6PP (Probabilistic Polynomial-Time) is the class of decision problems solvable by an NP (Nondeterministic

Polynomial-Time) machine which gives the correct answer (i.e., ‘Yes’ or ‘No’) with probability > 1
2 . PPP (P

with PP oracle) includes decision problems solvable in polynomial time with the help of an oracle for solving
problems from PP. Quantum circuit simulation belongs to the complexity class PPP [22].

7According to the Gottesman-Knill theorem [6], quantum circuits exclusively consisting of the following
components can be efficiently simulated on a classical computer in polynomial time:

• A state preparation N-circuit with initial value |000...0〉— qubit preparation in the computational basis,

• Quantum gates from the Clifford group (Hadamard, Phase, CNOT, and Pauli gates),

• Measurements in the computational basis

i
i

“book-chapter” — 2015/6/7 — 20:58 — page 31 — #31 i
i

i
i

i
i

Computer-Aided Design for Next-Generation Quantum Computing Systems 31

• In addition to this quantum simulation tool, a Monte Carlo simulation framework can
be developed to check if the applied QEC satisfies the maximum error probability
and to determine the success rate of the gate. This can be done in a simplistic manner
merely by generating random errors and estimating overall failure rates.

• Error probability or success rate of the gates can be used in error analysis of the final
MCL code to check the total success rate of the quantum circuit. Verification of the
MCL code against HF-QASM is not the target of our Toolbox because we expect that
the number of FT gates to be too large to be simulated using classical computers.

7. Performance Measures

Performance measures are the non-functional requirements of the NQCS Toolbox. They
are used to assess (i) the quality of results and (ii) the scalability of the NQCS Toolbox.

7.1. Quality of Results

We use the following performance measures to evaluate the outputs of the Toolbox.

• Total number of physical qubits: The total number of physical qubits required to
implement an algorithm.

• Circuit depth: This measure reflects the total runtime of the algorithm considering
the degree of parallelization in resulting circuits.

• Number of ancillae: Along with the number of main qubits, the number of ancillae
required at each step is an important parameter for circuit evaluation.

• Runtime/area ratio of the ideal circuit to the encoded circuit: The ratio of runtime/area
metric for the ideal circuit to that for the QEC-enabled circuit reflects the efficiency
of the QEC code.

• Area-Delay-to-Correct-Result: This metric is introduced in [24] and is defined as
follows:

ADCR = Area× Latency
Psuccess

, (1)

where Area is the area of the bounding box in the PMD in which the quantum al-
gorithm is mapped to, Latency is the delay of execution of the quantum algorithm,
which is calculated by the timing simulator, and Psuccess is the probability of getting
the correct (error-free) answer.

In addition to the aforesaid metrics, there are other metrics that can be considered dur-
ing different steps in order to make sure that our circuits meet the final constraints. Among
these metrics, geometric constraints (e.g., nearest neighbor interaction [17]), and gate com-
plexity (e.g., the average number of control qubits of each gate) are adopted in our Toolbox.

i
i

“book-chapter” — 2015/6/7 — 20:58 — page 32 — #32 i
i

i
i

i
i

32 Shafaei, Dousti, Pedram

Furthermore, to be amenable to automation, the Toolbox can take into account the role of
the researcher/user in various parts. One possibility is to provide the user access to manip-
ulate the trade-offs between resources. As an example, our back-end tool allows the user
to explore the circuit latency vs. ancilla count trade-off [25]. More specifically, physical
ancilla qubits are precious resources in quantum computers. However, increasing the total
ancilla budget may lead to a lower circuit latency and hence improved quality of results.

7.2. Toolbox Scalability

The Toolbox should be able to handle sufficiently large problem sizes. To better appreciate
the scalability challenge, we mention a few notable results.

• For a reversible circuit with n lines, where its optimal gate-count realization, needs h
gates from a library L , an enumerative method may branch h ways on each L-gate.
For example, assume that only multiple-control Toffoli gates exist in the library. For
this simplified case, an exhaustive method examines (n× 2n−1)h gates8 to find an
optimal circuit. Currently, the sharpest upper bound on the number of gates for a
reversible circuit is 8.5n2n + o(2n) [26]. Therefore, a given circuit may need an
exponential number of gates.

• The method in [27] uses a search-based method [28] to synthesize a given function.
Therefore, it may not be able to find a result. Accordingly, NQCS Toolbox uses [13]
which adopts decision diagrams to handle large functions. The early synthesis results
on an Intel 3.1 GHz CPU with 4 GB of memory with a runtime limit of 600 seconds
reveal interesting results [13]. We can increase the runtime limit to several days and
improve processing power in order to enhance the quality of results and also to handle
large-scale quantum circuits.

• The search space for quantum-logic synthesis is not finite, and circuits implementing
generic unitary matrices require Ω(4n) gates [29]. We use the Solovay-Kitaev theo-
rem for compiling an arbitrary single-qubit gate into a sequence of gates from a fixed
and finite set. The algorithm runs in O(log2.71(1/ε)) time.9 Considering an expo-
nentially number of gates leads to a runtime/memory limit on the classical computer
assigned to run the algorithms. Therefore, the processing power of the underlying
machine will limit the Toolbox.

• Quantum circuit simulation belongs to the complexity class PPP. Hence, handling
an arbitrary-size circuit is out of reach in general. For reversible circuits, SAT-based
techniques lead to good results [20]. While the Boolean satisfiability problem is NP-
complete, the state-of-the-art SAT solvers solve many practical problem instances,

8There are
(n

1
)

possible NOT gates and
(n

2
)

possible CNOT gates in which one of its two inputs can be
the target output. Hence, the total number of 2×

(n
2
)

CNOT gates can be obtained. For a (k+1)-bit gate,
k ∈ (2,3, · · · ,n−1), there are

(n−1
k
)

possible gates when the target can be the i-th (i ∈ [1,n]) bit. Considering
all possible bits as the target leads to n×

(n−1
k
)

(k+1)-bit gates. Therefore, the total number of gates is
(n

1
)
+

2×
(n

2
)
+n× (∑i∈(2···n−1)

(n−1
i
)
) = n×2n−1.

9It produces as output a sequence of O(log3.97(1/ε)) quantum gates which is guaranteed to approximate the
desired quantum gate to an accuracy within ε > 0.

i
i

“book-chapter” — 2015/6/7 — 20:58 — page 33 — #33 i
i

i
i

i
i

Computer-Aided Design for Next-Generation Quantum Computing Systems 33

i.e., a SAT instance can consist of hundreds of thousands of variables, millions of
clauses, and tens of millions of literals. Hence, we expect reasonable results on
a normal classical computer is obtainable. For quantum circuit verification, state-
of-the-art techniques [22] use improved decision diagrams and can handle middle-
size problems fast. However, automatic verification of large circuits is limited by
constraints imposed by NP-complete and PPP problems.

A key design strategy that significantly enhances the scalability of the NQCS Toolbox
is to take advantage of the hierarchical design of quantum circuits. More specifically, quan-
tum circuits can be partitioned into repetitively-used quantum modules. This means that
mapping one instance of these modules is sufficient. Accordingly, HF-QASM has been
chosen as the main input to the back-end tool. Table 8 compares sizes of compiled codes in
QASM and HF-QASM formats for various quantum benchmarks. As can be seen, for com-
plex algorithms such as Triangle Finding Problem, QASM format is completely inefficient
because it requires more than 60GB of disk space. On the other hand, HF-QASM can be
successfully adopted. For more information, please refer to [9].

Table 8. Comparison of QASM and HF-QASM file sizes for different quantum benchmarks.
module count denotes the number of modules used in the benchmark.

Benchmark Ref. Module Count Problem Size File Size Size Ratio
QASM HF-QASM

Grover’s Algorithm [2]
6 n=100† 548KB 52KB 11
6 n=300† 3.2MB 160KB 20
6 n=500† 7.0MB 268KB 27

Binary Welded Tree [30] 3 n = 43, 3≤ s≤ 19‡ 5.52MB – 34.9MB 84KB – 88KB 67 – 406

Ground State Estimation [3] 170 M=6§ 481MB 200KB 2,462

Triangle Finding Problem [4]
332 n=5∗ 63GB 504KB 129,418

10,202 n=10∗ Failed¶ 28MB N/A¶

† A database of 2n elements is being searched.
‡ n is the height of the tree and s is a time parameter within which the solution is found.
§ M is the molecular weight of a molecule.
∗ n is the number of nodes in the graph.
¶ The QASM file size exceeded 75GB and Scaffold compiler was crashed while generating the output file.

8. Further Reading

For further background on quantum information and computation, interested readers are
encouraged to consult the main textbooks including the book by Nielsen and Chuang [6].
For an introduction of reversible circuits and related synthesis and optimization methods
refer to the recent survey by Saeedi and Markov [28]. For simulation and verification of
quantum circuits please consult [22].

List of Acronyms

CTQG Classical code To Quantum Gate

i
i

“book-chapter” — 2015/6/7 — 20:58 — page 34 — #34 i
i

i
i

i
i

34 Shafaei, Dousti, Pedram

CAD Computer Aided Design

CULB Computing Universal Logic Block

ECC Error Correction Code

EFFBD Enhanced Functional Flow Block Diagram

FT Fault-Tolerant

ISA Instruction Set Architecture

MCL Machine Control Language

MCT Multiple-Control Toffoli

MULB Memory Universal Logic Block

NQCS Next-generation Quantum Computing Systems

O2I Operation-to-Instruction

PMD Physical Machine Description

QASM Quantum Assembly Language

H-QASM Hierarchical Quantum Assembly Language

HF-QASM Hierarchical Fault-tolerant Quantum Assembly Language

QC Quantum Control

QEC Quantum Error Correction

QGS Quantum Gate Set

QIDG Quantum Instruction Dependency Graph

QPD Quantum Physical Designer

QPL Quantum Programming Language

QUFD Quantum Universal logic block Factory Designer

RAW Read After Write

RC Resource Calculation

RMDDS Reed-Muller Decision Diagram Synthesis

SAT Satisfiability

ULB Universal Logic Block

WAR Write After Read

WAW Write After Write

XML Extensible Markup Language

i
i

“book-chapter” — 2015/6/7 — 20:58 — page 35 — #35 i
i

i
i

i
i

Computer-Aided Design for Next-Generation Quantum Computing Systems 35

Acknowledgments

The authors would like to thank Prof. Todd Brun, Dr. Hadi Goudarzi, Ali JavadiAbhari,
Dr. Chia-Chun Lin, Dr. Mehdi Saeedi, and Dr. Martin Suchura for their helpful discussions
and inputs.

This research was supported in part by the Intelligence Advanced Research Projects
Activity (IARPA) via Department of Interior National Business Center contract number
D11PC20165.

References

[1] P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer,” SIAM Journal on Computing, vol. 26, no. 5, pp.
1484–1509, Oct. 1997.

[2] L. K. Grover, “A fast quantum mechanical algorithm for database search,” in Proceed-
ings of the Theory of Computing, 1996, pp. 212–219.

[3] J. D. Whitfield, J. Biamonte, and A. Aspuru-Guzik, “Simulation of electronic structure
hamiltonians using quantum computers,” Molecular Physics, vol. 109, no. 5, pp. 735–
750, 2011.

[4] F. Magniez, M. Santha, and M. Szegedy, “Quantum algorithms for the triangle prob-
lem,” SIAM Journal on Computing, vol. 37, no. 2, pp. 413–424, 2007.

[5] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien,
“Quantum computers,” Nature, vol. 464, no. 7285, pp. 45–53, 2010.

[6] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information.
Cambridge University Press, 2000.

[7] A. JavadiAbhari, S. Patil, D. Kudrow, J. Heckey, A. Lvov, F. Chong, and
M. Martonosi, “ScaffCC: A Framework for Compilation and Analysis of Quantum
Computing Programs,” in International Conference on Computing Frontiers, May
2014.

[8] H. Goudarzi, M. J. Dousti, A. Shafaei, and M. Pedram, “Design of a universal logic
block for fault tolerant realization of any logic operation in an ion-trap quantum cir-
cuit,” Quantum Information Processing, vol. 13, no. 5, pp. 1267–1299, Jan. 2014.

[9] M. J. Dousti, A. Shafaei, and M. Pedram, “Squash 2: A Hierarchical Scalable Quan-
tum Mapper Considering Ancilla Sharing,” submitted.

[10] A. JavadiAbhari, A. Faruque, M. J. Dousti, L. Svec, O. Catu, A. Chakrabati, C.-F.
Chiang, S. Vanderwilt, J. Black, and F. Chong, “Scaffold: Quantum Programming
Language,” Department of Computer Science, Princeton University, Tech. Rep. TR-
934-12, June 2012.

i
i

“book-chapter” — 2015/6/7 — 20:58 — page 36 — #36 i
i

i
i

i
i

36 Shafaei, Dousti, Pedram

[11] K. M. Svore, A. V. Aho, A. W. Cross, I. Chuang, and I. L. Markov, “A layered software
architecture for quantum computing design tools,” Computer, vol. 39, no. 1, pp. 74–
83, Jan. 2006.

[12] N. E. Rainwater and S. J. Kapurch, “NASA systems engineering handbook,” National
Aeronautics Space Administration, Washington DC, NASA SP-2007-6105 Rev 1, Dec.
2007.

[13] C. Lin and N. K. Jha, “RMDDS: Reed-Muller decision diagram synthesis of reversible
logic circuits,” Journal on Emerging Technologies in Computing Systems, 2013.

[14] C. M. Dawson and M. A. Nielsen, “The Solovay-Kitaev algorithm,” Quantum Infor-
mation & Computation, vol. 6, no. 1, pp. 81–95, Jan. 2006.

[15] D. Kudrow, K. Bier, Z. Deng, D. Franklin, Y. Tomita, K. R. Brown, and F. T. Chong,
“Quantum rotations: a case study in static and dynamic machine-code generation for
quantum computers,” in Proceedings of the International Symposium on Computer
Architecture, 2013, pp. 166–176.

[16] C. Lin, A. Chakrabarti, and N. K. Jha, “Optimized quantum gate library for various
physical machine descriptions,” IEEE Transactions on VLSI Systems, 2013.

[17] M. Saeedi, R. Wille, and R. Drechsler, “Synthesis of quantum circuits for linear near-
est neighbor architectures,” Quantum Information Processing, vol. 10, no. 3, pp. 355–
377, Jun. 2011.

[18] E. Chi, S. A. Lyon, and M. Martonosi, “Tailoring quantum architectures to implemen-
tation style: a quantum computer for mobile and persistent qubits,” in Proceedings of
the International Symposium on Computer Architecture, 2007, pp. 198–209.

[19] M. Suchara, A. Faruque, C.-Y. Lai, G. Paz, F. Chong, and J. Kubiatowicz, “QuRE: The
Quantum Resource Estimator Toolbox,” in International Conference on Computer
Design, October 2013.

[20] R. Wille, D. Große, D. M. Miller, and R. Drechsler, “Equivalence checking of re-
versible circuits,” International Symposium on Multiple-Valued Logic, pp. 324–330,
2009.

[21] S.-A. Wang, C.-Y. Lu, I.-M. Tsai, and S.-Y. Kuo, “An XQDD-based verification
method for quantum circuits,” IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, vol. E91-A, no. 2, pp. 584–594, Feb. 2008.

[22] G. F. Viamontes, I. L. Markov, and J. P. Hayes, Quantum Circuit Simulation.
Springer, 2009.

[23] S. Aaronson and D. Gottesman, “Improved simulation of stabilizer circuits,” Physical
Review A, vol. 70, p. 052328, Nov. 2004.

[24] M. G. Whitney, N. Isailovic, Y. Patel, and J. Kubiatowicz, “A fault tolerant, area effi-
cient architecture for Shor’s factoring algorithm,” in Proceedings of the International
Symposium on Computer Architecture, 2009, pp. 383–394.

i
i

“book-chapter” — 2015/6/7 — 20:58 — page 37 — #37 i
i

i
i

i
i

Computer-Aided Design for Next-Generation Quantum Computing Systems 37

[25] M. J. Dousti, A. Shafaei, and M. Pedram, “Squash: A Scalable Quantum Mapper
Considering Ancilla Sharing,” in Proceedings of Great Lakes Symposium on VLSI,
May 2014, pp. 117–122.

[26] M. Saeedi, M. S. Zamani, M. Sedighi, and Z. Sasanian, “Reversible circuit synthe-
sis using a cycle-based approach,” Journal on Emerging Technologies in Computing
Systems, vol. 6, no. 4, pp. 13:1–13:26, Dec 2010.

[27] P. Gupta, A. Agrawal, and N. Jha, “An algorithm for synthesis of reversible logic
circuits,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 25, no. 11, pp. 2317 –2330, Nov. 2006.

[28] M. Saeedi and I. L. Markov, “Synthesis and optimization of reversible circuits — a
survey,” ACM Computing Surveys, vol. 45, no. 2, pp. 21:1–21:34, Mar. 2013.

[29] V. V. Shende, I. L. Markov, and S. S. Bullock, “Minimal universal two-qubit quantum
circuits,” Physical Review A, vol. 69, pp. 062 321:1–062 321:8, 2004.

[30] A. M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, and D. A. Spielman, “Ex-
ponential algorithmic speedup by a quantum walk,” in Proceedings of the Theory of
Computing, 2003.

	1 Introduction
	2 Key Definitions
	3 NQCS Toolbox Requirements
	3.1 Functional Requirements
	3.2 Interface requirements

	4 Functional Requirements Analysis and Specification
	4.1 Enhanced Functional Flow Block Diagram (EFFBD)
	4.2 The NQCS Toolbox
	4.3 Front-end
	4.4 Library Designer
	4.4.1 Mini language processor
	4.4.2 Circuit construction/optimization

	4.5 Back-end
	4.5.1 Timing Simulation

	4.6 Resource Calculation (RC)

	5 Interface Specification
	6 Verification
	6.1 Verification of algorithm to QPL
	6.2 Verification of Toolbox design requirements
	6.3 Verification of QPL to MCL

	7 Performance Measures
	7.1 Quality of Results
	7.2 Toolbox Scalability

	8 Further Reading

