
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, 20XX 1

Therminator 2: A Fast Thermal Simulator
for Portable Devices

Mohammad Javad Dousti, Member, IEEE, Qing Xie,
Mahdi Nazemi, Student Member, IEEE, and Massoud Pedram, Fellow, IEEE

Abstract—Maintaining safe chip and device skin temperatures
in small form-factor mobile devices (such as smartphones and
tablets) while continuing to add new functionalities and provide
higher performance has emerged as a key challenge. This
paper presents Therminator 2, an early stage, fast, full-device
thermal analyzer, which generates accurate transient- and steady-
state temperature maps of an entire smartphone starting from
the application processor and other key device components,
extending to the skin of the device itself. Therminator 2 uses
advanced numerical optimization techniques to perform steady-
state simulations 1.6 times faster than the prior art technique and
is capable of performing transient-state simulations in real-time
and 1.25 times faster than the prior art method. The thermal
analysis is sensitive to detailed device specifications (including
its material composition and 3D layout) as well as different use
cases (each case specifying the set of active device components
and their activity levels.) Therminator 2 considers all major
components within the device, builds a corresponding compact
thermal model for each component and the whole device, and
produces their transient- and steady-state temperature maps.
Temperature results obtained by using Therminator 2 have been
validated against a commercial computational fluid dynamics-
based tool, i.e., Autodesk Simulation CFD, and thermocouple
measurements on a Qualcomm Mobile Developer Platform and
Google Nexus 5. A case study on a Samsung Galaxy S4 using
Therminator 2 is provided to relate the device performance to
the skin temperature and investigate the thermal path design.

Index Terms—Thermal simulation, compact thermal modeling,
CTM, electrical-thermal duality, portable devices, transient-state
temperature, steady-state temperature, skin temperature.

I. INTRODUCTION

The popularity of mobile devices, such as smartphones
and tablets, has surpassed that of personal computers, thanks
to their portability and ease-of-use. Additional enablers for
the rapid increase in the number of smartphones have been
their improving functionality and ever-increasing performance
capabilities. This has in turn happened due to introduction of
high performance (heterogeneous and multi-core) processors
inside smartphones. Unfortunately, high performance proces-
sors cause two adverse effects:

1) They tend to experience higher average and peak die
temperatures.

2) They result in higher device skin (surface) temperatures.
High die temperature increases the leakage power consump-

tion [1], speeds up aging processes [2], and may eventually
cause permanent defects. High skin temperatures can cause
first or even second degree burns on device users, with obvious
and immediate adverse user reactions.

Mortiz and Henriques [3] conduct an extensive study on
the effect of temperature on human skin. The result of this

50 55 60 65
100

101

102

103

104

Temperature (°C)
E

xp
os

ur
e

Ti
m

e
(s

ec
)

First degree burn
Second degree burn

Fig. 1. Estimated exposure time of human skin to the hot water in order to
result in a burn.

research is summarized in Fig. 1. This figure shows that
the required time to cause a burn (first or second degree)
decays exponentially as the temperature increases. These data
are collected for adults and it is expected that burn occurs
faster for children and old people. It is also reported that the
maximum safe temperature for human skin is about 45 °C.
This threshold has also been confirmed by other researchers
[4], [5].

Hence, thermal design (i.e., designing the heat flow path and
a cooling method) and thermal management (i.e., employing
thermal response mechanisms to avoid hot spots and high
die temperatures) are crucial for a mobile device to improve
its performance and energy efficiency while maintaining safe
temperatures.

Proper thermal design effectively removes heat away from a
VLSI circuit die. In smartphones, application processors (APs)
incorporate CPU, GPU, DSP, sometimes a baseband radio unit,
and so on. The AP is a major heat generator in smartphones
[6]. Due to the cost, form factor, noise, and safety issues,
smartphones often rely on passive cooling methods that dissi-
pate the heat generated by the AP through thermal conduction
to the device skin. Thermal pads are usually attached on top
of the AP chip package to ease the heat removal [6], [7].
Thermal management techniques, such as frequency throttling
and voltage/frequency scaling, are also exploited to avoid high
die temperatures. For instance, GSMArena studied Qualcomm
Snapdragon 855 performance throttling in various Smartphone
devices required to prevent the AP’s junction temperature from
exceeding an upper threshold [8]. Even with the aggressive
performance throttling, maximum temperature of two of the
devices under test, namely OnePlus 7 and Black Shark 2,

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, 20XX 2

reaches 47 °C. Authors claim devices in this temperature is
“really uncomfortable” to be held in the hand.

As noted above, thermal design and management of smart-
phones are also concerned a skin temperature constraint. This
constraint refers to the fact that the temperature at the device
skin must not exceed a certain threshold. Ideally, distributing
the heat uniformly onto the device skin results in the most
effective heat dissipation. However, in practice, majority of the
heat flows in vertical direction from the AP die, and thus hot
spots are formed on the device skin above the AP location [9].
It is reported that the hottest spot on Apple iPad 3 can reach
as high as 47 °C while playing graphic intensive games [10].
Usually, a skin temperature thermal governor is implemented
to maintain the skin temperature at a desired setpoint by using
a control feedback.

To address this design challenge, it is necessary to model
the temperature map (i.e., temperature gradients) for the
smartphone in an accurate and efficient manner. Knowing the
detailed temperature map on the device skin at the design
time is helpful in the device fabrication. For instance, using
materials with high thermal conductivity in the thermal path
enhances heat removal from the AP and in turn causes high
skin temperature, whereas using low thermal conductivity
materials cannot remove the heat from the AP fast enough
and hence the die temperature goes up. Moreover, knowing
how the temperature of a particular component depends on
use cases helps to derive the optimal thermal management
policy for that component. For instance, setting CPU frequency
throttling threshold(s) is affected by how skin temperature
depends on the CPU frequency.

Analyzing temperature maps at early stages of the design
flow can significantly reduce the design time. Even though
computational fluid dynamics (CFD) tools generate accurate
temperature maps, they are slow, expensive, and not com-
patible with other performance/power simulators. Compact
thermal modeling (CTM) method has been proposed for ther-
mal analysis with reasonable accuracy and low computational
complexity [11], [12]. This method builds an RC thermal
network based on the well-known duality between the thermal
and the electrical phenomena, and solves for temperatures in
the network in a similar way to finding voltage values in an
electrical circuit.

In this work, we present Therminator 2, a CTM-based
component-level thermal simulator targeting small form-factor
mobile devices (such as smartphones and tablets). Thermi-
nator 2 (along with its predecessor [12]) is the first thermal
simulator that targets small form-factor mobile devices (such
as smartphones and tablets). It produces temperature maps for
all components, including the AP, battery, display, and other
key device components, as well as the skin of the device,
with high accuracy and fast runtime. Therminator 2 results
have been validated against thermocouple measurements on a
Qualcomm Mobile Developer Platform (MDP) [13] and simu-
lation results generated by Autodesk Simulation CFD [14]. It
is very versatile in handling different device specifications and
component usage information, which allows a user to explore
impacts of different thermal designs and thermal management
policies. New devices can be simply described through an

input specification file (in XML format). A detailed case study
is conducted for Samsung Galaxy S4 by using Therminator 2.
The temperature results relate the device performance to the
device skin temperature, as well as the impact of the thermal
path design. The new contributions of Therminator 2 compared
to its predecessor [12] are listed below:

1) Proved that the conductance matrix is a sparse positive
semi-definite matrix. This allowed us to employ faster
numerical methods and exploit the power of parallel
processing on multi-core CPUs to reduce the runtime
by 33x on average for steady-state thermal simulations
compared to the earlier version running on an NVIDIA
GPU. Our suggested method is also shown to be on
average 2.2x faster than HotSpot [15] and 1.6x faster than
3D-ICE [16].

2) Added the capability of fast transient-state thermal sim-
ulations. The accuracy of simulation results are verified
through measurements performed on a Google Nexus 5
device.

3) Optimized the transient-state thermal simulation such that
it can be done in real-time. This is a key benefit enabling
Therminator 2 to be used along with a power model based
on device components’ activities (e.g., PowerTap [17])
in order to produce temperature maps while a device is
being used without any thermocouple measurement or
thermal imaging equipment. In order to achieve the speed
up, first we show that the transient-state equation is a
stiff ordinary differential equation (ODE). Next, we use
an implicit Runge-Kutta method called Rosenbrock with
adaptive steps to solve the stiff ODE. The faster steady-
state calculation method (see item 1) is used in order to
quickly calculate the initial solution for the ODE. We
show that our transient-state solver is on-average 144x
faster than the one employed by HotSpot and 1.25x faster
than that of 3D-ICE.

4) Demonstrated that Therminator 2 steady- and transient-
state solvers are scalable and can handle very large
CTM problems with 1.68x less memory usage on average
compared to 3D-ICE.

Therminator 2 is available as an open-source software at
https://github.com/mjdousti/Therminator.

The rest of paper is organized as follows. Section II reviews
related work. Next, Section III introduces the Therminator 2
software architecture. After that, the modeling methodology is
explained in Section IV. Then, Section V describes techniques
used to solve thermal equations. Next, Section VI elaborates
implementation details and the evaluation of Therminator 2.
A case study is provided in Section VII. Finally, Section VIII
concludes the paper and presents the future work.

II. RELATED WORK

HotSpot [15] is a successful early-stage CTM methodology
targeting thermal analysis of a silicon die and its packaging
which are cooled with a heat sink and possibly a fan. It
generates die temperature maps. Temptor [18] is a tool based
on HotSpot which allows the temperature prediction using
performance counters instead of components’ power trace.

https://github.com/mjdousti/Therminator

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, 20XX 3

Meng et al. [19] improved HotSpot by adding the 3D chip
simulation support. Teculator [20] instruments HotSpot to
support thermoelectric coolers. 3D-ICE [16] is another thermal
simulator targeting 3D ICs equipped with liquid cooling.
However, neither HotSpot nor 3D-ICE can be modified or
extended to analyze small form-factor devices as they target a
single IC package along with its cooling equipment. In fact,
modeling smartphone is much more complicated due to:

1) Device model has many more sub-components and solv-
ing relevant CTM equations require more efficient nu-
merical techniques.

2) Multiple heat generators, including battery, display, and
a number of IC chips.

3) Complex 3D layout where each component may be
in vertical and/or horizontal contact with several other
components.

4) Necessity of considering the internal air in the device.

Comparing to those tools, Therminator 2 focuses on
component-level thermal modeling, in which the architecture-
level details inside a single chip package are ignored (even
though it has the capability of capturing chip-level floorplan.)
We have shown in [17] that given the average power con-
sumption of active components of the device every second,
Therminator 2 can produce respective temperature maps at the
same rate or faster. Last but not least, Section V demonstrates
the performance advantage of Therminator 2 solver over
HotSpot and 3D-ICE, especially for large CTM networks.

Several works have been conducted in studying the thermal
design for smartphones and tablets. Luo et al. [21] established
a simple thermal resistance network to analyze the whole
mobile phone system. However, the thermal resistance network
built in [21] is oversimplified as each component is modeled
as one block with a single uniform temperature value. Gurrum
et al. [6] modeled the smartphone in CFD tools and analyzed
the thermal effect of using materials with different thermal
conductivities through CFD simulation. Rajmond and Fodor
[7] used CFD tools to show that attaching thermal pad on top
of the AP significantly reduces the AP temperature. Egilmez
et al. [22] suggested a method to estimate the mobile skin
temperature using performance counters and temperature sen-
sors. Using this method, they created a temperature governor
for the Android operating system. Yun and Wu [23] created
a model for a smartphone using a commercial CFD and
shows the accuracy of the model through IR imaging. Kang
et al. [24] studies the thermal implications of running popular
applications on a smartphone using thermal imaging. Next,
they suggest a simple linear model to predict the device skin
temperature using internally available system statistics. Shen
et al. [25] suggests an online power management technique
based on Q-learning method which uses performance counters
and temperature sensors. The model adapts itself based on the
input in real-time. This model is capable of predicting tem-
perature as well. Francesco and Rosing [26] suggest a linear
model for predicting temperature of mobile devices based on
the current reading of temperature and power. The system
is numerically solved using N4SID method. Comparing to
these tools, Therminator 2 focuses on component-level thermal

Accelerators

temperature.map

T
he

rm
in

at
or

 2

Parser

specs.xml

Spatial
Database

Material
Library

power.trace

Power measurements
or power estimation tools

CTM

 Solver

Eigen

Odeint

MKL

Fig. 2. Architecture of Therminator 2.

modeling, in which the architecture-level details inside a single
chip package are ignored. Besides, Therminator 2 can be used
for realtime (online) simulations. We have shown in [17] that
given the average power consumption of active components of
the device every second, Therminator 2 can produce respective
temperature maps at the same rate or faster. This eliminates
the need for oversimplifying the thermal model into a simple
linear equation which reduces the accuracy. Moreover, a full-
device simulator enables device manufacturers to perform
design space exploration (see Section VII). To the best of our
knowledge, Therminator is the first tool targeting smartphones
that automatically builds a compact thermal model from the
device specification, and solves for temperature maps of all
components accurately in real-time.

III. THERMINATOR 2 SOFTWARE ARCHITECTURE

Fig. 2 depicts how Therminator 2 works. It takes two input
files provided by a user. The specs.xml file describes the
smartphone design, including components of interest, their
geometric dimensions (length, width, and thickness), and
relative positions. Users should provide properties of materials
(i.e., thermal conductivity, density, and specific heat) used to
manufacture the described device through this file. Listing 1
demonstrates a short specs.xml. The power.trace file
provides the power consumption of active components that
generate heat, e.g., ICs, the battery, and the display. The
power trace of each component can be obtained through real
measurements or other power estimation tools/methods such as
[17], [27], [28]. power.trace is provided as a separate file
so that one can easily interface a performance/power simulator
(such as GEM5/McPat [28], [29]) with Therminator 2.

Therminator 2 has three main modules. A parser module
parses input files, updates the material library, and makes
a set comprised of components specified by the input file.
Moreover, it performs multiple sanity checks to detect discrep-
ancy among specified components, e.g., it identifies overlap of

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, 20XX 4

1<?xml version="1.0" encoding="UTF-8"?>
2<device name="Device Name">
3 <!-- Device Aspect Ratio -->
4 <length>139.9e-3</length>
5 <width>71.2e-3</width>
6 <height>8.6e-3</height>
7 <!-- Ambient temperature in Kelvin -->
8 <temperature>298.15</temperature>
9 <power_trace_file>power.trace</power_trace_file>

10 <materials>
11 <material name="silicon">
12 <normal_conductivity>0.8</normal_conductivity>
13 <planar_conductivity>2</planar_conductivity>
14 <specific_heat>867</specific_heat>
15 <density>2330</density>
16 </material>
17 </materials>
18 <floorplans>
19 <floorplan name="Snapdragon_865">
20 <tile name="cpu-core1">
21 <length>2.8e-3</length>
22 <width>2.1e-3</width>
23 <x>5e-3</x>
24 <y>0.6e-3</y>
25 </tile>
26 </floorplans>
27 <components>
28 <component name="Snapdragon_865">
29 <material>silicon</material>
30 <power gen="yes">
31 <fill>no</fill> <!-- Fill the gap? -->
32 </power>
33 <lateral_connectivity>
34 yes
35 </lateral_connectivity>
36 <length>15.2e-3</length>
37 <width>15.1e-3</width>
38 <height>0.655e-3</height>
39 <x>102.39e-3</x>
40 <y>21.3e-3</y>
41 <z>4.56e-3</z>
42 <resolution>
43 <width>7</width>
44 <length>7</length>
45 <height>3</height>
46 </resolution>
47 </component>
48 </components>
49</device>

Listing 1. An example specs.xml file. A complete file needs to list all
components filling the device bounding box.

two components in space. A CTM module takes the validated
component set from the parser, divides them into fine-grained
sub-components, and stores them into a spatial database.
Next, the CTM module detects physical contacts among sub-
components and builds a compact thermal model. Finally, the
compact thermal model is given to a solver module. The
solver uses the thermal model along with the power trace
coming from the parser to compute temperature maps of all
components. The solver benefits from various accelerators to
quickly produce temperature maps.

IV. COMPACT THERMAL MODELING

There is a well-known duality between the thermal and
electrical phenomena [30]. This duality is summarized in
Table I. The compact thermal modeling method builds an
equivalent RC circuit based on the original thermal system.

TABLE I
THERMAL QUANTITIES AND THEIR ELECTRICAL DUALS

Thermal Electrical Dual

Thermal Quantity Unit Quantity Unit

Temperature (T) K Voltage (V) V
Power (P) W Current (I) A
Thermal resistance (Rth) K/W Electrical resistance (R) Ω
Heat Capacity (Cth) J/K Electrical capacitance (C) F

To build a compact thermal model, Therminator 2 divides
components (specified in specs.xml) into sub-components
with smaller dimensions and checks for physical contacts
among sub-components. Finer granularity of sub-component
division helps to produce more accurate temperature maps at
the cost of increased runtime and memory usage. Each sub-
component is modeled as a node in the thermal RC network
and has a single temperature value. A thermal resistance is
calculated for every sub-component pairs in contact, based
on their material properties, dimensions, and the contact area.
Similarly, a capacitance is added between every node and the
ground. This capacitance captures the sub-component specific
heat.

Fig. 3 shows a small part of a thermal RC network for the
Qualcomm MSM8660 Mobile Developer Platform (MDP) (see
[13] for details on MDP devices). The components in Fig. 3,
from top to bottom, include screen protector, display module,
PCB, IC chips, battery, and rear case. Therminator 2 breaks
various components into non-equal number of sub-components
according to their importance and requirements of solution
quality (see lines 41 to 45 in Listing 1.) For two adjacent sub-
components i and j, the thermal resistance is calculated by
serially connecting two thermal resistors from their centers to
the shared surface as follows.

ri,j = rj,i = ri + rj =
1

Ai,j
(
ti
gi

+
tj
gj

), (1)

where Ai,j is the common area between these two contacted
sub-components, gi and gj are thermal conductivities of their
respective sub-components, and ti and tj are the perpendicular
distances from the center of sub-components i and j to

Display

+Air
Chip PCB

Chassis
C1

C2

D1 D2 D3

P1
P2

Screen
Protector

C3
Battery

Rear
Case

B1 B2

R1 R2 R3

S1 S2 S3

z

y

Ambient

Ambient

A
m

bi
en

t

x

Fig. 3. A cross-section view of the thermal RC network in a simple
smartphone model.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, 20XX 5

the shared surface, respectively. Note that adjacency between
sub-components are detected in a 3D space and thereby,
we account for orthotropic thermal conductivity. A material
is orthotropic if its thermal conductivity varies in different
directions. PCBs are a good examples of orthotropic materials;
they have copper traces spanned in the horizontal plane and
hence exhibit a higher thermal conductivity in that direction
compared to the vertical direction.

At the boundaries of a device, heat diffuses to the ambient
environment (i.e., air). Thus, the boundary thermal resistance
between the ith sub-component and the ambient air is calcu-
lated as,

ri,amb = ri + ramb =
1

Ai,amb
(
ti
gi

+
1

hair
), (2)

where hair is the air heat transfer coefficient. In the natural
convection condition, hair has the value of 5∼25 W/(m2 · K)
[31].

Note that empty spaces, shown as orange areas in Fig. 3,
are left in the design specifications. Ignoring these empty
spaces, i.e., not calculating the thermal RC between them and
adjacent components will completely disable the heat flow
through them and subsequently result in temperature over-
estimation. Thus, to avoid this issue, they should be identified
and filled with air, as shown in Fig. 3. Note that in our
problem, due to the lack of specific air circulation channels in
smartphones, it is not practical to model the internal air using
compact modeling of fluids. Therefore, air flow is ignored and
it is modeled like other solid sub-components. We apply a
correction factor to the air thermal conductivity to account for
this simplification.

The heat capacity assigned to the sub-component i, which
is not at the boundary of the device, is calculated as

Cth,i = γ · ci · ρi · Vi, (3)

where γ is a correction factor, whereas ci, ρi, and Vi are the
specific heat, the density, and the volume of sub-component
i. γ is determined empirically as 0.5 to offset the effect of
lumping capacitors. If the ith component is at the boundary of
the device, its heat capacity is calculated as

Cbound
th,i = γ

(
ci · ρi · Vi + Cconv

th,� ·Ai,amb

)
, (4)

where Cconv
th,� is the convection heat capacitance per unit area

and Ai,amb is the common area between the sub-component i
and the ambient.

The ambience is modeled using a constant voltage source
with the value of the ambient temperature. This voltage source
is connected to the nodes corresponding to the sub-components
at the boundary of the device. Power generation of components
is modeled using current sources.

Solving the RC network made using the aforesaid technique
gives the voltage at every node of the device which is equiva-
lent to the temperature of sub-components in the initial device
model. By nodal analysis, one can formulate this problem as

C
d~T (t)

dt
+ G~T (t) = ~P (t), (5)

where t is time, C is the thermal capacitance matrix, G
is the conductance matrix, ~T (t) is the temperature vector
at time t, and ~P is the power consumption vector at time
t. C is a diagonal matrix, i.e., each element on the main
diagonal represents the heat capacity of its corresponding sub-
component. G can be represented as

G =

∑

i 6=1 g1,i −g1,2 . . . −g1,n
−g2,1

∑
i 6=2 g2,i . . . −g2,n

...
...

. . .
...

−gn,1 −gn,2 . . .
∑

i 6=n gn,i

 , (6)

where gi,j represents the thermal conductivity between sub-
components i and j. Clearly, the following relation holds.

gi,j = gj,i =
1

ri,j
=

1

rj,i
(7)

In the steady-state thermal analysis, similar to the DC analysis
of RC circuits, the first term in Eq. (5) is dropped and the
resultant system of linear equations is solved. On the other
hand, for transient analysis, the entire Eq. (5), which forms
a system of ordinary differential equations (ODEs), is solved.
This is a nonhomogeneous, first-order linear system of ODEs,
which has the following closed-form solution [32],

~T (t) = e−Y t

(∫ t

t0

eY tX(t)dt+ ~T (t0)

)
, (8)

where X(t)=C−1 ~P (t) and Y =C−1G. Calculating the numer-
ical value of this solution is comprised of matrix exponentials
and hence, requires numerical estimation of power series.
Moreover, ~P (t) is given over some period of time (say
from t to t + ∆t) and hence, the integral is converted into
a summation. As a result, Eq. (8) should be solved using
numerical methods. In the next section, we investigate various
techniques to quickly solve Eq. (5).

V. THE SOLVER

A key issue in solving an ODE is determining an initial
solution for it, which is denoted by ~T (t0) in Eq. (8). To
find such a solution, one can solve Eq. (5) in steady-state.
Consequently, generating online temperature maps of a system
consists of first solving the steady-state equation and the ODE
afterwards.

A. Steady-State Analysis

In this section, we investigate two techniques for solving
the system of linear equations presented in Eq. (5). The first
technique is LUP decomposition, which is used in the initial
version of Therminator, and the second method is sparse
Cholesky decomposition, which is much faster and adopted
in Therminator 2.

1) LUP Decomposition: The LUP decomposition method
decomposes G into a lower and an upper triangular matrices,
and then applies forward and backward substitution to solve
Eq. (5) for ~T (t). Therminator 1 uses advanced matrix solver
libraries enabling GPU-acceleration to reduce the runtime for
fine-grained temperature maps.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, 20XX 6

2) Cholesky Decomposition: In order to speed up steady-
state thermal simulations, first it is shown that the conductance
matrix is a positive semi-definite (PSD) matrix. The definition
of PSD matrices and the proof of the claim follow.

Definition 1. Matrix M is positive definite (PD) if it is sym-
metric and ~z>M~z is positive for any non-zero column vector
~z of real numbers. The definition of a positive semidefinite
(PSD) matrix is the same except the fact that ~z>M~z should
be non-negative.

Theorem 1. The conductance matrix G is PSD.

Proof. By definition, the conductance matrix is symmetric.
Also note that thermal conductivities are positive values and
gi,j ≥ 0. Now, consider ~z as a column vector where its ith

element is denoted by zi. Calculating the value of ~z>G~z gives

~z>G~z =
∑
i

z2i

(∑
j

j 6=i

gi,j

)
−
∑
i,j
i6=j

zizjgi,j

=
∑
i,j
i 6=j

z2i gi,j − zizjgi,j

=
1

2

∑
i,j
i6=j

(z2i gi,j + z2j gj,i)− 2zizjgi,j

=
1

2

∑
i,j
i6=j

(z2i + z2j)gi,j − 2zizjgi,j

=
1

2

∑
i,j
i6=j

(zi − zj)2gi,j ≥ 0.

Hence, G is PSD.

Next, the conductance matrix is transformed into a positive
definite matrix, which allows Cholesky decomposition to be
used in order to solve Eq. (5). Note that the LUP decompo-
sition is a generic matrix decomposition technique that can
be applied to any matrix. Therminator 2 uses the Cholesky
decomposition which is proven to be much faster than LUP
decomposition [33].

In order to apply the Cholesky decomposition on a matrix,
the matrix should be PD. The technique explained in [33]
is employed in order to apply the Cholesky decomposition
technique to a PSD matrix as explained next. Consider a matrix
called Gk = G + (1/k)I , where I is the identity matrix
and k is a large positive value. Using the same argument
presented in the proof of Theorem 1, it can be seen that Gk is
PD. Moreover, the value of k can be chosen arbitrarily large
such that Gk becomes an approximation of G. As a result,
it can be seen that matrix Gk can be decomposed to LkL

>
k ,

where Lk is a lower triangular matrix. As k approaches to
infinity, LkL

>
k tends to LL>, which is the decomposition

of matrix G. A very large k is chosen to calculate the
Cholesky decomposition of G numerically with negligible loss
of accuracy (less than 10−4 °C).

Moreover, it is shown that the conductance matrix is sparse
and hence the sparse variant of Cholesky decomposition may

TABLE II
COMPARING ODE TECHNIQUES IN NUMERICALLY SOLVING EQ. 8

Type Method Name Order Error
Estimation

Step Count Runtime
(in sec)

Explicit

Explicit Euler 1 No 100k† 2.76
Midpoint 2 No 100k† 8.32
Runge-Kutta 4 No 100k† 11.06
Cash-Karp 5 Yes 1849 0.40
Dormand-Prince 5 Yes 2092 0.46
Fehlberg 8 Yes 1364 0.89
Adams-Bashforth 4* No 100k† 2.81
Adams-Bashforth-Moulton 4* No 100k† 5.60
Bulirsch-Stoer variable Yes 1102 0.66

Implicit Rosenbrock 4 Yes 8 0.09

* This method takes the order as an input argument. We tried all possible
values and chose the one with the fastest runtime which was 4.
† 100k is the maximum number of allowed steps.

be used to achieve further speed-up. The definition of a sparse
matrix and the proof of the claim are as follows.

Definition 2. An n × n matrix is sparse, if at most O(n) of
its elements are non-zero [34].

Theorem 2. The conductance matrix G is sparse.

Proof. Every row of the conductance matrix corresponds to
a sub-component in the CTM. When the sub-components
are small enough, they have only six neighbors (i.e., only a
sub-component resides at each side of a rectangular cuboid.)
Considering the diagonal elements, there are seven non-zero
elements in every row of the conductance matrix. Hence,
the conductance matrix has a total of 7n = O(n) non-zero
elements.

B. Transient Analysis

ODE solvers need to numerically calculate d~T
dt many times

and hence it is critical to ensure that it can be done quickly.
Using Eq. 5 and notations in Eq. 8, one can write d~T

dt as

d~T (t)

dt
= C−1 ~P (t)−C−1G~T (t) = X(t)− Y ~T (t). (9)

To efficiently calculate this, three avenues are taken. First, Y
is pre-calculated and X is only calculated when ~P (t) changes.
Next, it is noted that Y is sparse. The reason is as follows.
Remember the fact that G was proven to be sparse. Y is
formed by multiplying a diagonal matrix (i.e., C−1) to G
and hence the resultant remains sparse. This sparsity reduces
the order of computations from quadratic to linear. Next, we
consider ten widely used explicit and implicit ODE solving
techniques and compare their runtime. Table II summarizes
the results of this comparison when solving the ODE for
a Google Nexus 5 device with 4000 sub-components and
∆T = 1s. In our experiments, we found that using adaptive
step selection technique not only results in lower runtime
and fewer solver iterations, but also does not require us to
manually tune the step size. Hence, all reported runtimes are
for methods with adaptive steps. Moreover, it is important to
note that all approaches yield identical results when they are
rounded to 0.1 °C. Consequently, for methods which allowed

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, 20XX 7

1k 2k 4k 8k 16k 32k 64k 128k 256k 512k 1M

0.01

1

100

Number of Sub-Components

R
un

tim
e

(s
ec

)

Sparse Cholesky-CPU (Therminator 2)
Sparse LUP-CPU (3D-ICE)
Sparse LUP-CPU (HotSpot)
Dense LUP-GPU (Therminator 1)
Sparse Cholesky-GPU

(a) Steady-state simulation

1k 2k 4k 8k 16k 32k 64k 128k 256k 512k 1M

0.01

0.1

1

10

100

1,000

10,000

Number of Sub-Components

R
un

tim
e

(s
ec

)

Therminator 2

3D-ICE

HotSpot

(b) Transient-state simulation

Fig. 4. Runtime comparison for different number of sub-components.

error estimation (see Table II), we used 0.1 °C as the desired
level of error. Using smaller error value would not be of
practical use and is beyond the precision of our thermocouples
which we used to verify the accuracy of Therminator 2 (see
Section VI.)

As can be seen, explicit methods are slower than the implicit
method and require more than two orders of magnitude steps
to solve the ODE equation. Hence, one can conclude the
fact that Eq. 8 is stiff. Explicit methods cannot handle Stiff
equations properly. They are often numerically unstable unless
the step size in solving the ODE is selected to be extremely
small [33]. Choosing small steps in turn leads to more steps
required to solve the problem and hence higher runtime as
already been demonstrated in Table II. Consequently, we
use Rosenbrock in Therminator 2 to solve the transient-state
equation. Rosenbrock is a fourth-order implicit Runge-Kutta
method and is detailed in [35].

C. Performance Benchmark
In this section, we benchmark the performance of Thermi-

nator 2 solver against its earlier version and prior art. These
benchmarks are done for a Google Nexus 5 device model
with different number of sub-components. CPU benchmarks
are performed on an Intel Core i7-9750H CPU with a base
frequency of 2.6GHz. This CPU is equipped with 6 cores and
12 threads and installed on a system with 32GB DDR4 mem-
ory. On the other hand, GPU benchmarks use an NVIDIA Ti-
tan RTX GPU with 24GB of memory. At the time of writing,
this GPU is the highest-end consumer GPU available. In
order to ensure the best performance from the NVIDIA GPU,
NVIDIA cuSOLVER [36] is employed. NVIDIA cuSOLVER is
a set of GPU-accelerated linear algebra libraries which utilize
NVIDIA CUDA parallel computing platform. Note that all
numerical methods presented in this section achieve identical
results when they are rounded to 0.1 °C.

1) Steady state: In this part, we compare five methods
explained earlier as follows:
• Sparse Cholesky-CPU (Therminator 2): This is the

method we chose for Therminator 2. It employs Eigen
library backed by Intel MKL PARDISO library [37].

• Sparse LUP (3D-ICE): 3D-ICE employs a library called
SuperLU [38] which is backed by Intel MKL library.

• Cholesky-CPU (HotSpot): This method is employed by
HotSpot 6 [39]. We enabled Intel MKL library [40] as
suggested by the software user manual to achieve the peak
performance it can offer.

• LUP-GPU (Therminator 1): This method is employed by
Therminator 1.

• Sparse Cholesky-GPU: Similar to Therminator 2 method
except this method is run on a GPU.

Fig. 4(a) compares all approaches explained above. Note
that the figure is a log-log plot. One can easily see that CPU
accelerated methods are much faster compared to their GPU
counterparts. Moreover, GPU accelerated methods fail to scale
to large sub-component counts. This is due to three reasons:
First, initializing a GPU and copying the matrix and vector
(i.e., G and ~P in Eq.5, respectively) from system memory to
GPU memory has a non-trivial amount of overhead. Second,
GPUs are designed to effectively perform batches of matrix
computations, whereas in this problem we are interested in
only solving a single linear equation. Last but not least,
Intel CPUs benefit from Single Instruction Multiple Data
(SIMD) operations, which are marketed as Advanced Vector
Extensions (AVX) [41] instructions. These operations help
implementations based on Intel CPUs achieve superior result.
Aside from wide availability of Intel CPUs, it is important to
note that the NVIDIA Titan RTX GPU is priced at $2500,
whereas Intel Core i7-9750H has a retail price of $395.

As we expected, Fig. 4(a) shows that Cholesky decomposi-
tion is faster than LUP. On GPU, sparse-Cholesky decomposi-
tion can scale to larger sub-component counts compared with
dense LUP; however, it still fails to scale to sub-component
counts greater than 128k due to memory issues. We think that
this is a limitation of NVIDIA cuSOLVER library otherwise
the GPU memory should be able to accommodate matrices
of that size. Unfortunately, NVIDIA cuSOLVER is not open
source so we cannot verify the details. 3D-ICE performs the
best for small problem sizes (smaller or equal to 8k) but
from that point on, Therminator 2 takes the lead. Surprisingly,
HotSpot only gains the best result for the largest problem
size, i.e., 1M. On average, Therminator 2 performs 1.6x, 2.2x,
and 33.2x better than 3D-ICE, HotSpot, and Therminator 1,
respectively.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, 20XX 8

AP
Battery

PCB

LCD Display

Screen Protector
Chassis

Rear Case

(a) (b) (c)

AP LCD
Display

Chassis

Battery

Rear
Case

PCB

Thermocouples

Screen
Protector

Temperature measurement point

Thermometer

Fig. 5. (a) Teardown of MSM8660 MDP device and temperature measurement kits (circle marks are temperature measurement points. Note for the PCB,
thermocouple is attached onto the other side), (b) CFD drawing, and (c) 3D visualization of Therminator 2 model.

2) Transient state: The initial version of Therminator does
not support transient-state thermal analysis. However, HotSpot
comes with a transient thermal simulator which is based on a
4th-order Runge-Kutta method with adaptive steps. Moreover,
3D-ICE also supports transient thermal simulation which is
based on an implicit method. Similar to the previous part,
HotSpot 6 is compiled with Intel MKL library and 3D-
ICE is compiled with SuperLU. Fig. 4(b) summarizes the
benchmarking results. We chose to perform the simulation for
one second. Note that the figure is a log-log plot.

One can simply see Therminator 2 is significantly faster
than HotSpot and surpasses 3D-ICE when the sub-component
count goes beyond 64k. More concretely, Therminator 2 is
on average 143.7x faster than HotSpot and 1.6x faster than
3D-ICE. For larger problem sizes, the speed up reaches
689.6x when compared to HotSpot and 4.4x when compared
to 3D-ICE. To put this in perspective, it takes about 5.8
hours, 2.2 minutes, and 1 minute for HotSpot, 3D-ICE, and
Therminator 2, respectively, to solve an ODE for one million
sub-components. Also note that Therminator 2, while being
faster, uses 3.8GB of system memory for 1M sub-components,
whereas 3D-ICE uses 6.4GB of memory which is 1.68x
higher.1

Comparing the high runtime of Runge-Kutta (which is an
explicit method employed by HotSpot) with that of Rosen-
brock (which is an implicit method used in Therminator 2)
from Table II partly explains why Therminator 2 performs
better. On the other hand, 3D-ICE utilizes an implicit method
and hence has a performance close to that of Therminator 2.
Besides the used ODE solving method, the speed up tech-
niques we explained earlier for efficiently calculating d~T

dt has
helped Therminator 2 significantly.

VI. IMPLEMENTATION & EVALUATION

A. Implementation

Therminator 2 is implemented using C++ and compiled
by GCC 10.2. The parser adopts PugiXML [43], an open
source, light-weight, and fast C++ XML processing library.
The built-in material library is a class called Materials

1We used GNU Time [42] to measure the peak memory usag of each
program. Note that GNU Time is different and more capable than the regular
UNIX time command.

which holds default material properties and its data are up-
dated by the parser. All components and sub-components
are instances of Component and Subcomponent classes,
respectively. A Device class keeps track of sub-component
objects using a spatial database. Another class called Model
takes the device object and builds the thermal model based
on Equations (1)-(4). Several geometric utility methods are
implemented in order to perform basic spatial queries on
sub-components, e.g., checking the physical contact between
every two sub-components, determining if they have overlap
in space, and calculating their common area. Moreover, the
Model class calls another parser to read the power.trace
file which contains the power consumption of each component.

As explained previously, Therminator 2 requires to exploit
the system’s maximum performance. Hence, C++ is selected
for its implementation. Besides, Therminator 2 uses Eigen [44]
with Intel Math Kernel Library (MKL) [40] as a back-end
to solve steady-state thermal equations. Eigen is an open-
source high-performance high-level linear-algebra template
library for C++, whereas MKL is a parallel low-level linear
algebra library carefully-tuned for Intel CPUs. In order to solve
transient-state thermal equations, Odeint Rosenbrock solver
[45] was modified to use Eigen’s sparse matrix representation
with MKL as a back-end. Odeint is an open-source fast C++
library to solve ODEs.

B. Evaluation

1) Validation of Therminator 2 Results: A Qualcomm
MSM8660 MDP [13] is used as the target system to validate
Therminator 2 results. The MSM8660 MDP has a dual-
core 1.5GHz CPU, Adreno 220 GPU, 1GB LPDDR2 RAM,
3.61-inch touch screen, and a 1,300mAh Li-ion battery. A
smartphone consists of a large number of small components
with irregular geometric shapes and complicated material
compositions. In this work, the major components of the
MSM8660 MDP are identified and their thermal properties
are obtained mostly from Autodesk Material Library [14].
Fig. 5(a) shows a teardown of the MSM8660 MDP. We
create a model for MSM8660 MDP device by identifying
major components that have thermal impact to the entire
device and measure their dimensions and relative positions.
Components identified include rear case, chassis, battery, PCB,
display, screen protector, and some ICs, such as AP, DRAM,

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, 20XX 9

eMMC, GPS and WiFi. The detailed material properties and
dimensions for components are not shown for brevity. The
MSM8660 MDP model is drawn in the Autodesk software, as
shown in Fig. 5(b), and the CFD thermal analysis is performed
accordingly. CFD results are treated as golden results and
they are compared to Therminator 2 results. Thus, a simi-
lar MDP device model, including the aforesaid components,
their dimensions, relative positions and material properties, is
specified in the specs.xml file for Therminator 2. Fig. 5(c)
visualizes the 3D layout model that Therminator 2 creates
from the input file. Note that Therminator 2 applies different
granularity to various components.

A few representative use cases are executed that utilize
different components and consume various amounts of power.
Use cases tested in this work are StabilityTest [46] (an applica-
tion that heavily stresses CPU, GPU, and the memory), Candy
Crush [47] (a popular mobile game), YouTube [48] (a famous
video streaming application), the built-in camera application,
and a local video playback. Trepn Profiler [49] is adopted to
record the per-component power consumption breakdown of
this device, and provide the results as inputs to both CFD
simulation software and Therminator 2. Note that the total
power consumption of some small components (interconnects,
sensors, etc.) is assigned to the PCB uniformly because the
schematic diagram of the MSM8660 MDP is not available to
precisely locate them.

Temperatures of three different locations in MSM8660
MDP, shown as red circles in Fig. 5(a), are measured:

1) The hot spot on the screen located above the AP;
2) The hot spot on the rear case located below the battery

(because there is a big air gap between the PCB and the
rear case, the hot spot on the rear case is located below
the battery); and

3) The PCB (the opposite side of the board shown in
Fig. 5(a).)

Sysfs [50] of the MDP device is accessed through the
Android Debug Bridge (ADB) interface and the AP junction
temperature is obtained by reading the temperature register in
the /sys/class/thermal/thermal_zone2 directory.
Note that the temperature register has the accuracy of ±1 °C.
MCC USB-2408 [51] with type T thermocouple [51] is used to
measure the temperature of hot spots on the rear case and PCB.
The ambient temperature is also measured as 23.0 °C during
the experiments. The type T thermocould has the accuracy of
about ±0.56 °C.

Table III compares the temperature of aforementioned re-
gions obtained through thermocouple measurements, CFD
simulations, and Therminator 2. First, the thermocouple mea-
surement results and CFD simulation results are compared.
One can see that CFD simulation produces accurate results for
all tested use cases and all regions. The maximum and average
temperature error are 2.4 °C and 0.7 °C (11.0% and 4.7%),
respectively. The error mainly comes from simplifications in
modeling the real device and inaccuracies in determining
component material properties. Note that the largest error
(2.4 °C) comes from the AP junction temperature in the
YouTube use case. A potential reason might be the inaccuracy
of the temperature register (i.e., ±1 °C).

30 35 40 45 50 55

(a1) (a2)
(a) Screen protector temperature maps

(b1) (b2)

(b) Rear case temperature maps

(c1) (c2)
(c) PCB temperature maps

Fig. 6. (a1, b1, c1) Temperature maps produced by Autodesk Simulation CFD
and (a2, b2, c2) by Therminator 2 for the StabilityTest use case.

Next, CFD results are used as golden results and Ther-
minator 2 results are compared with them. Specified com-
ponents are divided into a total of 7,336 sub-components
in Therminator 2. Table III shows that for all use cases
and temperature points, the maximum and average errors of
Therminator 2 are only 0.7 °C and 0.25 °C (3.65% and 1.42%),
respectively, compared to CFD results. Fig. 6 shows more
detailed comparisons of temperature maps, produced by the
CFD simulation and Therminator 2, of the front screen, the
rear case, and the PCB. One can see that Therminator 2 is able
to accurately capture not only the temperature of a particular
hot spot, but also temperature maps of the entire smartphone
device. Therefore, Therminator 2 matches very well with the

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, 20XX 10

TABLE III
TEMPERATURES OBTAINED FROM THE THERMOCOUPLE MEASUREMENT (TCM), AUTODESK SIMULATION CFD, AND THERMINATOR 2. NOTE THE AP

JUNCTION TEMPERATURE IS READ FROM TEMPERATURE REGISTER (REG) INSTEAD OF DIRECT MEASUREMENT. THE AMBIENT TEMPERATURE IS 23.0 °C.

Use Case Tscreen hot spot (°C) Trear case hot spot (°C) TPCB (near battery) (°C) TAP junction (°C)

TCM CFD Therminator 2 TCM CFD Therminator 2 TCM CFD Therminator 2 Reg CFD Therminator 2

StabilityTest 38.1 38.4 38.5 38.4 39.1 38.7 44.9 44.5 44.4 60 58.6 59.3
Candy Crush 37.2 37.8 37.7 38.4 39.2 38.9 46.2 44.6 44.8 59 59.0 59.5
YouTube 35.8 37.0 36.7 34.6 34.4 34.2 39.3 38.4 38.3 43 45.2 45.4
Camcorder 31.7 32.2 32.1 33.3 32.6 32.4 36.9 36.2 36.2 42 42.7 43.3
Video playback 30.2 30.8 30.7 30.5 30.8 30.7 33.3 33.4 33.4 39 39.4 40.0

35
40
45
50
55
60
65
70
75

0 5 10 15 20 25 30

Te
m

pe
ra

tu
re

 (C
)

Time (sec)

Display (Simulated) Display (Measured)
Rear Case (Simulated) Rear Case (Measured)
AP (Simulated) AP (Measured)

Fig. 7. Comparison of measured and simulated temperatures.

commercial CFD tool, given the same input models.
Also, a Google Nexus 5 smartphone is torn apart and its

physical model is built. Next, temperature of three points is
used to verify the transient-state simulation results: the AP
internal temperature sensor and two sensors placed on the
hottest spots of the rear case and the display of the phone.
Similar to the previous experiment, MCC USB-2408 was used
to log temperatures of these two sensors. StabilityTest [46]
is executed to stress the AP, GPU and the memory of the
smartphone and then the application is closed. Fig. 7 shows the
transient temperature change when the smartphone is cooling
down. On average, an error of 1.5◦C, 1◦C. and 0.5◦C for the
AP, display, and rear case were observed, respectively. Given
the fact that the accuracy of the AP sensor and USB-2408
are ±1◦C and ±0.56◦C, respectively, the above error values
are acceptable. Note that the AP temperature changes very
quickly; however, the temperatures of display and rear case
are reducing very slowly. This is due to the fact that AP has a
higher temperature difference with the ambient and the thermal
constant of AP is smaller than that of the display and rear case.

2) Convergence of Therminator 2 Results: Therminator 2
can generate more detailed temperature maps at higher res-
olution with slightly longer runtime. The convergence of
temperature versus the total number of sub-components cre-
ated by Therminator 2 is studied for MSM8660 MDP in
Fig. 8. Convergence errors is calculated at different resolutions
by comparing temperature results obtained at a particular
resolution to those obtained at the highest resolution that are
tested (18,109 sub-components in total). One can see that the
convergence errors of all four temperature points drop below
1% when the total sub-components number is above 7,000.

According to the previously reported results, the difference of
Therminator 2 results compared to CFD results is only 1.42%
for 7,500 sub-components. The runtime of Therminator 2 at
that resolution is less than 80 milliseconds for steady-state
simulations.

0 5 10 15 20
0

2

4

6

8

Sub-component Counts (×1000)

Er
ro

r i
n

pe
rc

en
t (

%
) TAP,junc Tscreen Trear case TPCB

Fig. 8. Therminator 2 results convergence and runtime versus sub-component
counts for the StabilityTest use case.

VII. CASE STUDY

Therminator 2 is versatile in handling different form-factor
devices as long as input files are provided properly. In
this section, we provide a case study targeted at Samsung
Galaxy S4. Unlike the MSM8660 MDP device, Samsung
Galaxy S4 does not provide power consumption values due
to some commercial reasons. Thus, the power consumption
for major components, i.e., AP (CPU and GPU) and display,
are estimated by measuring the total power consumption of
Galaxy S4 at the battery output terminals and scaling them to
the power breakdown ratio as reported in [52]. A simplified
model of Galaxy S4 is also created, as shown in Fig. 9. An AP
floorplan describing locations of CPU and GPU is specified
in the specs.xml file to increase the accuracy of results.

We notice that in Galaxy S4, the thermal governor throttles
the CPU, GPU, and memory operating frequencies such that
the skin temperature will not exceed 45 °C, i.e., the skin
thermal governor has the temperature setpoint of 45 °C. The
critical temperature of AP junction is usually quite high, say
85 °C, and thereby the frequency throttling we have observed
is triggered by the skin thermal governor. We validate Ther-
minator 2 results for the maximum skin temperature located
on the front screen (denoted as Tskin) and the AP junction
temperature (TAP,junc) against the thermocouple measurement
results. The measurements results and Therminator 2 results
in the same condition of power consumption are highlighted
in Table IV. One can see that the temperature error produced
by Therminator 2 (the shaded row) is within 0.5 °C (2%).

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, 20XX 11

eMM
C

PCBBattery Chassis
Chassis

Rear Case

WiFi

AP 4G LTE Audio
Codec

Screen Protector

OLED Display

Thin Metal Plate Thick Metal Plate

Chassis

Fig. 9. 3D layout for Samsung Galaxy S4. Sub-components are not shown.

TABLE IV
SKIN TEMPERATURE AND AP JUNCTION TEMPERATURE OBTAINED BY

THERMOCOUPLE MEASUREMENT (TCM) AND THERMINATOR 2 AT
DIFFERENT AP POWER CONSUMPTION LEVELS.

Method Temperature (°C) Power (W)

TAP, junc Tskin P ∗AP PAP,leak PAP,dyn

TCM 62.5 44.8 2.20 0.15 2.05

Therminator 2

68.0 47.7 2.64 0.18 2.46
66.5 47.1 2.53 0.17 2.36
65.1 46.5 2.42 0.16 2.26
63.7 45.9 2.31 0.15 2.16
62.3 45.3 2.20 0.15 2.05
60.9 44.7 2.09 0.15 1.94
59.4 44.1 1.98 0.13 1.85
58.0 43.5 1.87 0.13 1.74
56.1 42.9 1.76 0.12 1.64
55.2 42.4 1.65 0.12 1.53
53.8 41.8 1.54 0.11 1.43
52.3 41.2 1.43 0.11 1.32
50.9 40.6 1.32 0.11 1.21
49.5 40.0 1.21 0.10 1.11
48.1 39.4 1.10 0.10 1.00

To simulate the effect of frequency throttling utilized by
the thermal governor, the total power consumption is scaled
to produce different steady-state skin temperatures. Table IV
reports the corresponding Tskin and TAP,junc values for
various AP power consumption values. To better study the
effect of skin temperature on the device performance, the
dynamic power consumption is obtained by subtracting the
leakage power consumption, estimated by McPAT [28], from
the total AP power consumption values. Note that the average
AP temperature is used to estimate leakage power consumption
values. Each row in Table IV indicates a dynamic power
consumption level when that specific skin temperature is met.
In other words, when the skin thermal governor sets the target
Tskin as the values listed in the third column of Table IV, the
approximated AP’s dynamic power consumption allotment are
shown in the fifth column.

Fig. 10 plots the AP’s dynamic power consumption allot-
ment (denoted by PAP,alt) versus the skin temperature setpoint
(denoted by Tskin,set) as the latter is a typical variable in
various thermal management policies. The blue dots indicates
that PAP,alt (which is proportional to the device operating
frequency and therefore, the device performance) has a linear
relationship with the setpoint value of skin temperature. From
the data presented in Fig. 10, we capture this relationship as,

PAP,alt = α · Tskin,set − β, (10)

0.5

1

1.5

2

2.5

A
P

po
w

er
 a

llo
tm

en
t (

W
)

Skin temperature setpoint (°C)

PAP,dyn=α skin,set-β

38 40 42 44 46 48

50

60

70

T A
P,

 ju
nc

 (°
C)

PAP,dyn

TAP,junc

Fig. 10. AP power consumption and junction temperature versus various skin
temperature setpoints.

where α = 0.18 W/K and β = 5.92 W. Since the device
performance highly depends on Tskin,set, allowing high skin
temperature results in significant performance improvement.
For instance, increasing Tskin,set from 45 °C to 48 °C results
in 15.5% increase of PAP,alt, i.e., an increase from 1.93 W to
2.23 W. On the other hand, decreasing Tskin,set from 45 °C to
42 °C results a decrease from 1.93 W to 1.63 W. In addition,
one can also observe from Fig. 10 that the AP’s junction
temperature also linearly depends on the skin temperature
setpoint (red crosses).

Clearly, modifying the thermal path design for a device
affects its peak performance level. The impact of thermal
properties of the device exterior case is studied by exploring
its thermal conductivity from a low value (insulation material)
to a high value (conductive material). Fig. 11(a) shows that
both of Tskin and TAP,junc decrease when higher thermal
conductivity materials are used for the exterior case of the
device. More precisely, adopting aluminum as the device
case results in 0.5 °C lower Tskin and TAP,junc, comparing
with using pure plastic as the device case. This temperature
reduction is helpful in improving the device performance. In
practice, device manufacturers may also account for other
factors such as the manufacturing cost.

40

45

50

T sk
in

 (°
C)

Case material's conductivity (Wm-1K-1)
10

-1
10

0
10

1
10

2
58

63

68

T A
P,

 ju
nc

 (°
C)Tskin TAP,junc

Plastic Aluminum

(a)

40

45

50

T sk
in

 (°
C)

Thermal pad material's conductivity (Wm-1K-1)
10

-1
10

0
10

1
10

2
60

65

70

T A
P,

 ju
nc

 (°
C)Tskin TAP,junc

(b)

Fig. 11. (a) Skin and AP junction temperature versus rear case material and
(b) thermal pad material for PAP =2.2 W.

We also investigate the impact of the material composition
of thermal pad, which is attached on top of the AP, in

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, 20XX 12

Fig. 11(b). A clear trade-off can be observed between Tskin
and TAP,junc for various types of materials. This observation
complies with results reported by a group of researchers at
Texas Instrument Inc. [6]. The optimal thermal path design
should touch the AP junction temperature constraint and skin
temperature constraint at the same time. From the thermal path
design perspective, adopting a thermal pad with lower thermal
conductivity on top of the AP achieves better performance.
This is because Tskin is usually more critical in smartphones
and a low thermal conductivity material hinders the heat flow
to the device skin. However, in practice, some other factors
(such as accelerated aging of the AP and high leakage power
at high temperatures) may prevent the usage of low thermal
conductivity materials.

VIII. FINAL REMARKS

A. Conclusion

We presented Therminator 2, a component-level compact-
thermal-modeling-based thermal simulator targeting small
form-factor devices in this work. Therminator 2 is an early-
stage, full-device thermal analyzer that quickly produces ac-
curate steady- and transient-state temperature maps of all
components (ICs, boards, screens, cases, etc.) in a smartphone,
from the application processor to the skin of the device,
with a fast runtime. Using advanced numerical optimizations,
Therminator 2 can perform steady-state simulations 1.6 times
faster than the prior art technique and is capable of performing
transient-state simulations in real-time and 1.25 times faster
than the prior art method. It provides great flexibility in
handling different user-specified design specifications and use
cases. We validated temperature results produced by Thermi-
nator 2 against real temperature measurements using thermo-
couples and simulations using a commercial computational-
fluid-dynamics tool on the Qualcomm MSM8660 MDP device
and Google Nexus 5. We also provided a case study on
Samsung Galaxy S4 by using Therminator 2, showing that
the device performance is linearly related to the device skin
temperature. In addition, the impact of the thermal path design
on the skin and AP junction temperature was also studied.

B. Limitations and Future Work

Therminator 2 only allows cuboid components. Other
shapes such as components with circular corners can only be
approximated using several small cuboids. This is a cumber-
some process to be done manually and can be automated.

Besides, with the speed improvements presented in this
paper, one can use Therminator 2 solver to automate the
thermal design of a new device. Therminator 2 sits at the
heart of an optimizer which takes into account constraints
such as material properties, dimension, and ratio of various
components.

Last but not least, it is important to point out that Thermi-
nator 2 inherently supports passive cooling methods through
the use of materials with low thermal conductivity. However,
support of active cooling techniques is more involved and
is planed for future work. More concretely, the following
techniques are considered.

• Thermoelectric coolers: These coolers can be divided into
three layers where the bottom layer produces negative
power (i.e., sucks the heat) and the top layer generates
power. The middle layer generates power proportional
to the Joule heating. Currently, this can be defined in
the specs.xml file in order to associate proper power
consumption to each layer. Supporting an independent
thermoelectric cooler component would simplify and ab-
stract the above details. See our earlier work for more
details [20].

• Forced convection cooling (or fans): A simple and less
accurate model can be added as an element with negative
power. A more accurate implementation requires simulat-
ing air flow. With that said, it is important to note that
very few smartphones and tables are equipped with fans
due to reliability, noise, and power consumption concerns.

• One- or two-phase microchannel liquid cooling and direct
jet impingement: This is a new space for portable devices
and previously has been extensively studied only for high-
performance devices. For instance, 3D-ICE [16] presents
a CTM for these coolers. A feasibility study, including
the effectiveness, cost analysis, and reliability, is required
to ensure use of these coolers would be beneficial for
portable devices.

REFERENCES

[1] M. Pedram and S. Nazarian, “Thermal modeling, analysis, and manage-
ment in vlsi circuits: Principles and methods,” Proceedings of the IEEE,
vol. 94, no. 8, pp. 1487–1501, 2006.

[2] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers, “The case for
lifetime reliability-aware microprocessors,” ACM SIGARCH Computer
Architecture News, vol. 32, no. 2, p. 276, 2004.

[3] A. R. Moritz and F. C. Henriques, “The relative importance of time and
surface temperature in the causation of cutaneous burns,” The American
Journal of Pathology, vol. 23, no. 5, pp. 695–720, 1947.

[4] E. A. Arens and H. Zhang, “The skin’s role in human thermoregulation
and comfort,” in Thermal and Moisture Transport in Fibrous Materials,
N. Pan and P. Gibson, Eds. Woodhead Publishing, 2006.

[5] G. L. Wasner and J. A. Brock, “Determinants of thermal pain thresholds
in normal subjects,” Clinical Neurophysiology, vol. 119, no. 10, pp.
2389–2395, 2008.

[6] S. P. Gurrum, D. R. Edwards, T. Marchand-Golder, J. Akiyama,
S. Yokoya, J. Drouard, and F. Dahan, “Generic thermal analysis for
phone and tablet systems,” in Proceedings of the Electronic Components
and Technology Conference, 2012, pp. 1488–1492.

[7] J. Rajmond and A. Fodor, “Thermal management of embedded devices,”
in Proceedings of the International Spring Seminar on Electronics
Technology, 2013, pp. 30–34.

[8] GSMArena team, “Are gaming phones worth it? Black Shark, Red Magic
vs mainstream flagships,” https://www.gsmarena.com/gaming_phones_
throttling_performance-review-1957.php, 2019, [Online; accessed 3-26-
2020].

[9] A. Ku, “Asus Transformer Pad TF300T review: Tegra
3, more affordable,” http://www.tomshardware.com/reviews/
transformer-pad-tf300t-tegra-3-benchmark-review,3179.html, Apr.
2012, [Online; accessed 3-26-2020].

[10] J. A. Kaplan, “New Apple iPad hits 116 degrees, consumer
reports says,” http://www.foxnews.com/tech/2012/03/20/
ipads-not-overheating-apple-says, 2012, [Online; accessed 3-26-2020].

[11] M.-N. Sabry, “Compact thermal models for electronic systems,” IEEE
Transactions on Components and Packaging Technologies, vol. 26, no. 1,
pp. 179–185, 2003.

[12] Q. Xie, M. J. Dousti, and M. Pedram, “Therminator: A thermal simulator
for smartphones producing accurate chip and skin temperature maps,” in
Proceedings of the International Symposium on Low Power Electronics
and Design, 2014, pp. 117–122.

https://www.gsmarena.com/gaming_phones_throttling_performance-review-1957.php
https://www.gsmarena.com/gaming_phones_throttling_performance-review-1957.php
http://www.tomshardware.com/reviews/transformer-pad-tf300t-tegra-3-benchmark-review,3179.html
http://www.tomshardware.com/reviews/transformer-pad-tf300t-tegra-3-benchmark-review,3179.html
http://www.foxnews.com/tech/2012/03/20/ipads-not-overheating-apple-says
http://www.foxnews.com/tech/2012/03/20/ipads-not-overheating-apple-says

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, 20XX 13

[13] “Snapdragon MDP mobile development platform -
legacy devices,” https://developer.qualcomm.com/hardware/
mdp-mobile-development-platform, [Online; accessed 3-26-2020].

[14] “Autodesk CFD software,” http://www.autodesk.com/products/cfd/
overview, [Online; accessed 3-26-2020].

[15] K. Skadron, M. R. Stan, K. Sankaranarayanan, W. Huang, S. Velusamy,
and D. Tarjan, “Temperature-aware microarchitecture: Modeling and
implementation,” ACM Transactions on Architecture and Code Opti-
mization, vol. 1, no. 1, pp. 94–125, 2004.

[16] A. Sridhar, A. Vincenzi, M. Ruggiero, T. Brunschwiler, and D. Atienza,
“3D-ICE: fast compact transient thermal modeling for 3D ICs with inter-
tier liquid cooling,” in Proceedings of the International Conference on
Computer-Aided Design, 2010, pp. 463–470.

[17] M. J. Dousti, M. Ghasemi-Gol, M. Nazemi, and M. Pedram, “ThermTap:
An online power and thermal analyzer for portable devices,” in Pro-
ceedings of the International Symposium on Low Power Electronics and
Design, Jul. 2015.

[18] Y. Han, I. Koren, and C. Krishna, “Temptor: A lightweight runtime tem-
perature monitoring tool using performance counters,” in Proceedings
of the Workshop on Temperature-Aware Computer Systems, 2006.

[19] J. Meng, K. Kawakami, and A. K. Coskun, “Optimizing energy ef-
ficiency of 3-D multicore systems with stacked dram under power
and thermal constraints,” in Proceedings of the Design Automation
Conference, 2012, pp. 648–655.

[20] M. J. Dousti and M. Pedram, “Platform-dependent, leakage-aware
control of the driving current of embedded thermoelectric coolers,” in
Proceedings of the International Symposium on Low Power Electronics
and Design, 2013.

[21] Z. Luo, H. Cho, X. Luo, and K.-i. Cho, “System thermal analysis for
mobile phone,” Applied Thermal Engineering, vol. 28, no. 14, pp. 1889–
1895, 2008.

[22] B. Egilmez, G. Memik, S. Ogrenci-Memik, and O. Ergin, “User-specific
skin temperature-aware dvfs for smartphones,” in Proceedings of the
Design, Automation, and Test in Europe, 2015, pp. 1217–1220.

[23] Y.-J. Yu and C.-J. Wu, “Designing a temperature model to understand
the thermal challenges of portable computing platforms,” in Proceedings
of the Intersociety Conference on Thermal and Thermomechanical
Phenomena in Electronic Systems, 2018, pp. 992–999.

[24] S. Kang, H. Choi, S. Park, C. Park, J. Lee, U. Lee, and S.-J. Lee,
“Fire in your hands: Understanding thermal behavior of smartphones,” in
International Conference on Mobile Computing and Networking, 2019,
pp. 1–16.

[25] H. Shen, Y. Tan, J. Lu, Q. Wu, and Q. Qiu, “Achieving autonomous
power management using reinforcement learning,” ACM Transactions
on Design Automation of Electronic Systems (TODAES), vol. 18, no. 2,
pp. 1–32, 2013.

[26] F. Paterna and T. Š. Rosing, “Modeling and mitigation of extra-soc ther-
mal coupling effects and heat transfer variations in mobile devices,” in
2015 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), 2015, pp. 831–838.

[27] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao,
and L. Yang, “Accurate online power estimation and automatic battery
behavior based power model generation for smartphones,” in Proceed-
ings of the Conference on Hardware/Software Codesign and System
Synthesis, 2010, pp. 105–114.

[28] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “McPAT: an integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in Proceedings
of the International Symposium on Microarchitecture, 2009.

[29] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
ACM SIGARCH Computer Architecture News, vol. 39, no. 2, pp. 1–7,
2011.

[30] F. Kreith, The CRC handbook of thermal engineering. Springer, 2000.
[31] Y. Cl,engel, Heat and mass transfer: A practical approach. McGraw-

Hill, 2007.
[32] W. E. Boyce and R. DiPrima, Elementary differential equations and

boundary value problems, 11th ed. Wiley, 2017.
[33] W. Ford, Numerical linear algebra with applications: Using MATLAB.

Academic Press, 2014.
[34] Richard C. Allen, Chris Bottcher, Phillip Bording, Pat Burns, John

Conery, Thomas R. Davies, James Demmel, Chris Johnson, Lakshmi
Kantha, William Martin,, Geoffrey Parks, Steve Piacsek, Dan Pryor,
Tamar Schlick, M.R. Strayer, Verena M. Umar, Robert Voigt, Jerrold
Wagener, Dave Zachmann, and John Ziebarth, Computational science
education project. U.S. Department of Energy, 1996.

[35] H. Rosenbrock, “Some general implicit processes for the numerical
solution of differential equations,” The Computer Journal, vol. 5, no. 4,
pp. 329–330, 1963.

[36] “cuSOLVER | NVIDIA Developer,” https://developer.nvidia.com/
cusolver, [Online; accessed 7-6-2020].

[37] “Intel MKL PARDISO - Parallel Direct Sparse Solver Interface,”
https://software.intel.com/content/www/us/en/develop/documentation/
mkl-developer-reference-fortran/top/sparse-solver-routines/
intel-mkl-pardiso-parallel-direct-sparse-solver-interface.html, [Online;
accessed 3-26-2020].

[38] “Superlu,” https://portal.nersc.gov/project/sparse/superlu/, [Online; ac-
cessed 3-26-2020].

[39] R. Zhang, M. R. Stan, and K. Skadron, “Hotspot 6.0: Validation,
acceleration and extension,” University of Virginia, Tech. Rep, 2015.

[40] “Intel math kernel library (Intel MKL),” https://software.intel.com/en-us/
mkl, [Online; accessed 3-26-2020].

[41] C. Lomont, “Introduction to intel advanced vector extensions,” Intel
white paper, vol. 23, 2011.

[42] “GNU time,” https://www.gnu.org/software/time/, [Online; accessed 3-
26-2020].

[43] “pugixml,” http://pugixml.org, [Online; accessed 3-26-2020].
[44] G. Guennebaud, B. Jacob et al., “Eigen v3,” http://eigen.tuxfamily.org,

2010, [Online; accessed 3-26-2020].
[45] K. Anhert and M. Mulansky, “Odeint — solving ordinary differential

equations in c++,” in American Institute of Physics Conference, 2011.
[46] “StabilityTest,” https://play.google.com/store/apps/details?id=com.into.

stability&hl=en, [Online; accessed 1-6-2017].
[47] “Candy Crush Saga,” https://play.google.com/store/apps/details?id=com.

king.candycrushsaga, [Online; accessed 3-26-2020].
[48] “YouTube,” https://play.google.com/store/apps/details?id=com.google.

android.youtube, [Online; accessed 3-26-2020].
[49] “Trepn Profiler,” https://developer.qualcomm.com/forums/software/

trepn-power-profiler, [Online; accessed 3-26-2020].
[50] P. Mochel, “The sysfs filesystem,” in Proceedings of the Linux Sympo-

sium, 2005.
[51] “Measurement Computing’s USB-2408 series,” https://www.mccdaq.

com/usb-data-acquisition/USB-2408-Series.aspx, [Online; accessed 3-
26-2020].

[52] X. Chen, Y. Chen, Z. Ma, and F. C. Fernandes, “How is energy consumed
in smartphone display applications?” in Proceedings of the Workshop on
Mobile Computing Systems and Applications, 2013, pp. 1–6.

https://developer.qualcomm.com/hardware/mdp-mobile-development-platform
https://developer.qualcomm.com/hardware/mdp-mobile-development-platform
http://www.autodesk.com/products/cfd/overview
http://www.autodesk.com/products/cfd/overview
https://developer.nvidia.com/cusolver
https://developer.nvidia.com/cusolver
https://software.intel.com/content/www/us/en/develop/documentation/mkl-developer-reference-fortran/top/sparse-solver-routines/intel-mkl-pardiso-parallel-direct-sparse-solver-interface.html
https://software.intel.com/content/www/us/en/develop/documentation/mkl-developer-reference-fortran/top/sparse-solver-routines/intel-mkl-pardiso-parallel-direct-sparse-solver-interface.html
https://software.intel.com/content/www/us/en/develop/documentation/mkl-developer-reference-fortran/top/sparse-solver-routines/intel-mkl-pardiso-parallel-direct-sparse-solver-interface.html
https://portal.nersc.gov/project/sparse/superlu/
https://software.intel.com/en-us/mkl
https://software.intel.com/en-us/mkl
https://www.gnu.org/software/time/
http://pugixml.org
http://eigen.tuxfamily.org
https://play.google.com/store/apps/details?id=com.into.stability&hl=en
https://play.google.com/store/apps/details?id=com.into.stability&hl=en
https://play.google.com/store/apps/details?id=com.king.candycrushsaga
https://play.google.com/store/apps/details?id=com.king.candycrushsaga
https://play.google.com/store/apps/details?id=com.google.android.youtube
https://play.google.com/store/apps/details?id=com.google.android.youtube
https://developer.qualcomm.com/forums/software/trepn-power-profiler
https://developer.qualcomm.com/forums/software/trepn-power-profiler
https://www.mccdaq.com/usb-data-acquisition/USB-2408-Series.aspx
https://www.mccdaq.com/usb-data-acquisition/USB-2408-Series.aspx

	Introduction
	Related Work
	Therminator 2 Software Architecture
	Compact Thermal Modeling
	The Solver
	Steady-State Analysis
	LUP Decomposition
	Cholesky Decomposition

	Transient Analysis
	Performance Benchmark
	Steady state
	Transient state

	Implementation & Evaluation
	Implementation
	Evaluation
	Validation of Therminator 2 Results
	Convergence of Therminator 2 Results

	Case Study
	Final Remarks
	Conclusion
	Limitations and Future Work

	References

