
ThermTap: An Online Power Analyzer and
Thermal Simulator for Android Devices

Mohammad Javad Dousti, Majid Ghasemi-Gol, Mahdi Nazemi, and Massoud Pedram
Department of Electrical Engineering, University of Southern California, Los Angeles, CA, USA

{dousti,ghasemig,mnazemi,pedram}@usc.edu

Abstract—This paper introduces ThermTap, which enables sys-
tem and software developers to monitor the power consumption
and temperature of various hardware components in an Android
device as a function of running applications and processes.
ThermTap comprises of a power analyzer, called PowerTap, and
an online thermal simulator, called Therminator 2. With accurate
power macro-models, PowerTap collates activity profiles of major
components of a portable device from the OS kernel device
drivers in an event-driven manner to generate power traces. In
turn, Therminator 2 reads these traces and, using a compact
thermal model of the device, generates various temperature
maps including those for the device components and device skin.
Fast thermal simulation techniques enable Therminator 2 to be
executed in realtime. With precise per-process and per-application
temperature maps that ThermTap produces, it enables software
and system developers to find thermal bugs in their software.
A case study is presented on identifying a thermal bug in the
software running on an Android device.

I. INTRODUCTION

In the past five years, portable devices have become an
integral and indispensable part of our life. In 2011, smartphones
and tablets have surpassed the sale of PCs and become the
dominant part of consumer electronics [1]. Main technological
barriers against advancement and further penetration of these
devices into our everyday life include relatively high power
consumption and their small-form factor, which limits the
amount of energy storage that can be integrated into these
devices. Moreover, these devices have a very strict thermal
envelope. A mobile device has two types of thermal constraints.
The first one (similar to PCs) is the die temperature constraint.
This constraint makes sure that the application processor (AP)
which contains CPU, GPU, and some other components runs
below a certain temperature all the time. The second constraint
is called the skin temperature constraint which is unique to
mobile devices [2], [3]. It ensures that the temperature at the
surface (or skin) of the device remains low to avoid any user
discomfort or skin burn.

In order to ensure that a device adheres with the aforemen-
tioned power and thermal constraints, precise modelings and
measurements are required during the design and prototyping.
Due to the very limited resources available on portable devices,
their software should be designed in power- and thermal-aware
manners. One simple solution is to embed thermal sensors
as well as current sensors into every major component of
the device in order to measure their temperature and power
consumption. The main drawback of this solution is that in a
complex multithreading and multitasking environment, sensors
are blind to which applications/processes affect the temperature
and cause the temperature rise. Furthermore, sensors do not
provide temperature maps for their respective component and
thus, cannot determine workload-dependent hot spots. Besides,
deployment of accurate temperature sensors increases the cost
of the device and hence is not desirable. Moreover, use of
external sensors might not be practical and indeed unaffordable
for many software or system developers [4].

In this paper, we introduce ThermTap, which enables system
and software developers to monitor the power consumption
and temperature of various hardware components in a portable
device as a function of running applications and processes.
ThermTap comprises of two important parts: a power analyzer
called PowerTap and an online thermal simulator called
Therminator 2.

PowerTap collates the operating state and activity infor-
mation of various system components in the device from the
operating system (OS) device driver layer. This is done in an
event-driven manner as opposed to a sampling-based method,
which has a high overhead and tends to be slow [5], [6]. We use
SystemTap which is an industry-standard kernel debugging and
performance monitoring tool [7]. SystemTap allows dynamically
adding probes inside a running kernel without any destructive
side-effect. In this paper, we use the term probing as a method
for printing (or aggregating) debugging information at specific
points in the executable code. SystemTap generates loadable
kernel modules and guarantees very low overhead [8]. For
instance, one may place a probe at the entry point of a kernel
function which is responsible for sending data packets over
WiFi and another probe at its return point. Using these two
probes, the time it takes to transmit the data can be determined
by calculating the difference between the triggering times of
the first and second probes. Moreover, the second probe reports
the amount of data that is successfully sent through WiFi.

By leveraging the wealth of information that resides in the
kernel, PowerTap adopts properly-tuned accurate power macro-
models in order to generate power traces. Note that obtaining
data from the kernel enables PowerTap to determine per-
component power consumption of each application and process
(an application comprises of single or multiple processes).

Subsequently, Therminator 2 (which comprises of transient-
and steady-state thermal solvers) receives the power trace from
PowerTap every second and produces thermal maps at the
same rate, a process which we call online thermal analysis.
Unfortunately, the state-of-the-art thermal simulators are known
to be slow for this purpose. Thus, we borrow fast finite element
analysis techniques to accelerate thermal simulations.

Given the physical characteristics of the portable device,
Therminator 2 builds a compact thermal model (CTM) of
the device, and then generates temperature maps for every
device component, from the device skin to the AP. These maps
can be produced per application and per process, which give
important insights about the device and the software it runs.
More specifically, a developer may use this information to
determine applications/processes causing the temperature rise.
In other words, the developer can use ThermTap framework
for thermal debugging.

To the best of our knowledge, ThermTap is the first online
power analyzer and thermal simulator for Android devices
that enables device manufacturers as well as developers to
debug thermal issues in the system software and applications.

{dousti, ghasemig, mnazemi, pedram}@usc.edu

We would like to emphasize the fact that ThermTap only
requires a USB connection to a device in order to collect
the required information and generate power and temperature
graphs. The source code of ThermTap can be obtained from
http://sportlab.usc.edu/downloads.

The remainder of this paper is organized as follows. First,
Section II reviews the previous work. Then, Section III intro-
duces ThermTap and details how PowerTap and Therminator 2
work. Besides, it explains how ThermTap is implemented. After
that, Section IV explains the process of evaluating ThermTap
followed by a case study. Finally, Section V concludes the
paper.

II. PREVIOUS WORK

Many efforts have been conducted on the power character-
ization, modeling, and metering of portable devices without
direct measurement. All of these work can be classified into two
main categories. First, sampling techniques (e.g., PowerTutor
[9], Sesame [10], and [11]), which rely on polling the device
internal sensors, hardware performance counters, OS kernel
sysfs/procfs contents, or the battery sensors. Second, event-
driven methods (e.g., eprof [12], AppScope [5], and FEPMA
[6]) in which the OS kernel is properly instrumented to report
desired events (usually power state transitions). It is shown
in [5] that the event-driven methods have lower overhead
and higher accuracy compared to the sampling techniques.
Moreover, it is demonstrated in [6] that event-driven methods
can capture high-frequency power change events, whereas the
first method lacks this capability.

We found that the CPU model characterized in AppScope
was single-core and in FEPMA was dual-core. In this work, we
model a quad-core processor and consider the power correlation
among the cores. Moreover, GPU model is missing in [5] and is
modeled in [6] using an artificial neural network which captures
the dependence between the CPU workload and that of the
GPU. This approach imposes a significant computational load
for the power calculator and its accuracy should be improved
by direct modeling. Besides, it does not consider the effect
of frequency on GPU power as well as cannot reveal which
application/process is accessing GPU. In contrast, PowerTap
directly models the GPU power, which is fast and more accurate.
Last but not least, PowerTap considers the internal flash storage
of the device, which consumes substantial power during disk
intensive operations (\sim 0.6W).

Thermal simulation using compact thermal modeling is a
well known concept. HotSpot [13] is a popular tool which
simulates a chip with its cooling package (comprised of a heat
sink and a fan) in transient and steady-state modes. 3D-ICE
[14] is another thermal simulator which captures liquid cooling.
These tools have two important drawbacks. First, they are not
fast and hence not suitable for realtime (online) simulations. Sec-
ond, they are not designed for thermal simulations of portable
devices. In our prior work, we have introduced a simulator
for portable devices called Therminator [15]. Even though
Therminator solves the second problem, the first problem still
exists, i.e., it is still slow. Moreover, Therminator does not
support transient-state thermal simulations. A significant speed-
up can be achieved (for steady-state temperature analysis) using
NVIDIA’s high-end GPGPUs. In this paper, we achieve an even
higher speed-up by only using a desktop-class Intel CPU.

III. THERMTAP OVERVIEW

ThermTap is a system-level power analyzer and thermal
simulator designed for Android-based portable devices. It

requires only a USB connection (which comes with every
portable device) to communicate with the device and gather
the activity information of major components. Fig. 1 shows a
high-level overview of ThermTap. As can be seen, ThermTap
consists of two important parts. First, PowerTap (which is
a power analyzer) is responsible for collecting information
about the operating state and activity levels of various sys-
tem components to generate per-process and per-component
power traces utilizing properly tuned power models. Second,
Therminator 2 (which is an online thermal simulator) takes the
device physical characteristics (from the user) as well as the
power trace (from PowerTap) and generates temperature maps
corresponding to every component of the device. ThermTap
is responsible for synchronizing PowerTap and Therminator 2.
In the remainder of this section, PowerTap and Therminator 2
and their implementations are explained in detail.

A. PowerTap: A Power Analyzer for Android Devices

PowerTap has two important modules which play key roles
to generate power traces. The first one is a system state monitor,
which collects information about the operating state and activity
levels of various system components. The second one is a power
profiler, which utilizes the system state information along with
well-tuned power models for system components to produce
power traces.

1) System State Monitor: PowerTap exploits SystemTap
for collecting activity profiles. SystemTap has been developed
mainly by Red Hat, IBM, Intel, Hitachi, and Oracle as a tool
for debugging and analyzing the performance of the Linux
kernel. It receives an input script written by the user, which
specifies probing codes that must be executed before and after
a set of target instructions (i.e., specific memory locations in
the kernel or user space where probes should be inserted). Next,
SystemTap compiles the script to produce a kernel module,
which is subsequently dynamically loaded into the Linux kernel.
Note that since Android is based on Linux, such modules can
be used for Android-based devices as well. When a SystemTap-
made kernel module is loaded, instructions in the specified
memory locations are replaced with breakpoints, which redirect
the program execution flow to a user-defined method. At the
end of this method, the removed instruction followed by another
user-defined method and a return instruction are executed. In
addition, proper instructions are inserted before the return
instruction to restore the state of previous code execution
flow. This ensures the complete restoration of the CPU state.
Fig. 2 demonstrates this process. A detailed description on how
SystemTap works can be found in [7].

inst

kernel/user code

Instrumented

kernel/user code

Instructions to

be executed

before “inst”

Instructions to

be executed

after “inst”

Collecting

information
inst

break

point

Fig. 2. SystemTap work flow.

In order to calculate the time a certain event takes from start
to finish, PowerTap places probes at the entry and return points
of device driver functions. Moreover, return probes are used to
make sure that a certain action is successfully completed. For

http://sportlab.usc.edu/downloads

PowerTap Flow

Applications

Application Framework

Libraries Android Runtime

Native Daemons

L
in

u
x
 K

e
rn

el

USB Connection

Power

Trace

Power Models

CPU GPU WiFi

4G LTE Display

Probe entry
Probe return

time (jiffies)

A
n

d
ro

id
 O

S

Flash

Therminator 2 Flow

Parser

Compact Thermal Model

RealTime Solver

Sparse Cholesky

ODE

MKL

ThermTap

OpenMP

Device

Specification

Device

Drivers
tracefs

Debugfs

Trace File

SystemTap Module

Power ProfilerADB

Fig. 1. ThermTap structure. On the left, the work flow of PowerTap and its interaction with Android OS is shown. On the right, Therminator 2 work flow is
depicted. The user should provide a device physical specification along with the application/process that he is interested in for probing. ThermTap generates
temperature maps of the selected application/process.

instance, one may try to send a packet over WiFi; however, the
packet might be dropped due to weak WiFi coverage. Checking
the return probe allows detection of such situations. Note that
PowerTap allows multiple (different) power models to be active
at the same time because it records the start and end times of
events and then aggregates the relevant power models for all
active events.

The information gathered by the kernel module is transferred
from the kernel space to the user space in order to be read
by the power profiler (see Fig. 1). We use tracefs to export
activity log from the kernel space to the user space. Tracefs is
a low-overhead in-memory file system suitable for this purpose
[16]. Note that logging data directly to the disk would increase
the system load significantly and hence is avoided. Finally,
PowerTap connects to the device using Android Debug Bridge
(ADB) through a USB cable, in order to collect the information
stored inside the tracefs buffer.

2) Power Profiler: In this paper, we use a Google Nexus 5
running Android 5.0 as the target device for training power
models. Nexus 5 comes with a quad-core Qualcomm Snap-
dragon 800 processor and 2 GB memory. Please note that the
power models presented in this section are general and can be
applied to other portable devices.

In order to execute (synthetic as well as standard) bench-
marks while controlling/monitoring the power state of various
system components, we connect the phone to a PC through a
USB cable. The total power consumption of the device (P total

device)
is calculated as

P total
device = VUSBIUSB + VbatIbat, (1)

where VUSB and Vbat denote the voltages provided by the USB
and the battery, respectively, whereas IUSB and Ibat are the
currents supplied from the USB and the battery to the phone,
accordingly. IUSB is measured by cutting the USB power lane
and placing it in series with an ammeter (NI-9227) to log the
current. Ibat is logged similarly. Besides, Vbat is measured and
logged using a voltmeter (NI-9239). The sampling rate for both
of NI-9227 and NI-9239 is set to 2kHz. Note that based on
the USB 2.0 specification, VUSB is fixed at 5V, whereas IUSB

can be at most 0.5A. The second term in Eq. (1) is usually
negative due to the direction of Ibat which shows that the USB
current not only supplies the phone but also charges the battery.
However, the smartphone under a heavy load may draw more
than 0.5A current which changes the direction of Ibat from

negative to positive and forces the battery to provide current
to the system.

Knowing the value of P total
device, we can find the power con-

sumption of major components as follows. First, all components
(except CPU) are turned off, for instance, GPU, WiFi, 4G,
and display. Note that because CPU is always ON during
benchmarking, it is characterized first. Also, all background
processes are stopped (this is a feature provided by Android).
As a result, the power consumption of each component can be
characterized individually by selectively turning it on. Next,
CPU power model is characterized using the StabilityTest
benchmark. After that, each major component is turned on using
synthetic benchmarks and the total power of the smartphone
is measured. Knowing the CPU power model, the CPU power
consumption is calculated and subtracted from the measured
P total
device to determine the power consumption of the component

of interest. The power of the remainder of system (which
belongs to components that are not considered) is captured as
a constant and assigned to the main PCB of the device. In the
remainder of this subsection, the power models that we have
derived are briefly explained.

CPU power modeling: Initially, we disable all CPU
cores except one. Next, a power model for a single core is
derived. Then, cores are activated one by one and their power
consumptions in a fully utilized state are measured for different
frequencies. We observed that the power consumption of each
core changes based on the total number of active cores. Fig. 3
depicts the power consumption of a single active core with
respect to the total number of active cores drawn at six different
clock frequencies. For these measurements, all of the cores are
fully utilized and Android power and thermal governors are
turned off. As can be seen in Fig. 3, at higher frequencies, the
dependence of individual core power consumption on the total
number of active cores becomes more pronounced. Moreover, as
we explain below, the per core power consumption is minimum
when the number of active cores in the target system is two.

Before presenting the detailed CPU power consumption
model, we define some terms. fi and vi are frequency and
voltage of core i, respectively. ucore represents the normalized
utilization of a core. We calculate ucore in every scheduling
epoch of the operating system as

ucore = (tuser + tsystem)/(tuser + tsystem + tidle), (2)

where tuser, tsystem, and tidle are times that the core spends
for running user space codes, kernel space codes, and being idle,

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1 2 3 4

Pe
r C

or
e

Po
w

er
 U

sa
ge

 (W
)

Total Number of On Cores

2.3GHz 2.0GHz 1.80Ghz
1.5GHz 1.0GHz 0.3GHz

Fig. 3. Power consumption of each core in the Nexus 5 drawn with respect
to the total number of active cores

respectively. Note that these values are internally determined
by the OS and thus, PowerTap can simply access them for
calculating ucore for every core i (shown by ucorei). Similar
to [17], we define the term workload processing rate for core
i as

wi = fi \cdot ucorei . (3)

We attribute the behavior shown in Fig. 3 to the power
consumption of other non-core components of CPU (e.g., inter-
core interconnects and shared cache banks) typically referred
to as the uncore. Assuming that off cores (power-gated cores)
consume zero power and considering that on cores consume
dynamic plus active leakage power during program execution
but only standby leakage power when sitting idle, the total
CPU power consumption (PCPU) can be modeled as

PCPU = (P dyn
cores + P leak

cores) + Puncore

=
\sum

i\in \{ on cores\}

\bigl(
\beta dyn
core(vi) \cdot fi \cdot ucorei + \beta leak

core(vi)
\bigr)

+ \beta uncore(wtot, non). (4)

where \beta dyn
core(vi), \beta

leak
core(vi), and \beta uncore(wtot, non) are lookup

table-based fitting functions; wtot is the total workload pro-
cessing rate of CPU which is defined as

wtot =
\sum

i\in \{ on cores\}

wi. (5)

We expect \beta dyn
core(vi) to be a quadratic function of vi,

whereas \beta leak
core(vi) to be a linear function of vi. In addition,

\beta uncore(wtot, non) should be a linearly increasing function of
wtot and a convex function of non, where the minimum is
achieved for a certain number of on cores, called nopt

on . As
mentioned before, nopt

on in Fig. 3 is equal to 2. Note that the
non-proportionality of energy of CPUs arises in part due to
core leakage and uncore power consumption terms.

GPU power modeling: Nexus 5 has an Adreno 330
integrated into the AP for 2D and 3D graphic processing.
Adreno 330 shares main memory with the processor [18].
Hence, we only need to account for the power consumption of
the GPU core. Android uses a driver called Kernel Graphics
Support Layer (KGSL) developed by Qualcomm to provide
a Hardware Abstraction Layer (HAL) for userspace Adreno
drivers. KGSL allows various processes to create different GPU
contexts, which are analogous to CPU processes. At each point
in time, only one context can be executed on GPU. KGSL
is responsible to perform context switching. Finally, a context
is destroyed when its execution is finished or an exception
is occurred. By tracing the context create request, one can
simply determine which context belongs to which process, and
consequently, assign the related GPU power consumption to
the process. Adreno 330 supports DVFS through a proprietary

closed-source policy called trustzone. KGSL is responsible
of applying the actions determined by the policy to the GPU
hardware.

Based on the above discussion, we model the GPU power
consumption as

PGPU = \beta dyn
GPU (v) \cdot f \cdot uGPU + \beta leak

GPU (v), (6)

where \beta dyn
GPU (v) and \beta leak

GPU (v) are lookup-based fitting func-
tions of the GPU voltage level (v), f is the GPU frequency,
and uGPU represents the normalized utilization of GPU.

WiFi & 4G-LTE power modeling: We measured the
WiFi power consumption during send and receive operations.
It has been observed that the power consumption of WiFi
while receiving data is linearly proportional to the receive rate,
whereas during the send operation, it behaves as a piecewise
linear function with two thresholds; one occurs at 2Mbps, and
the other one happens at 8Mbps. Similar behavior was observed
for 4G-LTE with different thresholds.

Display power modeling: Nexus 5 has a full-HD IPS LCD
display. As a result, the display power is linearly proportional
to its brightness. This is in contrast to OLED displays, where
the screen content plays a major role in power consumption
[5], [6]. Thus the display power can be modeled as

PDisplay = \beta Display \cdot Brightness, (7)

where \beta Display is the linearization coefficient and Brightness
is the normalized brightness value which varies from 0 to 1.
According to our measurements, the IPS LCD display consumes
nearly zero power when it is completely dim.

Flash storage power modeling: It is observed that when
the data transfer rate (write or read) is low, the flash consumes
significantly less power. We conjecture that in low transfer
rates, caching and write back methods are used (as opposed
to the write through technique). On the other hand, in high
transfer rates, the power consumption becomes high. Hence
we define a threshold for the transfer rate called \beta thre

flash and
model the flash power consumption (separately for read and
write operations) as

Pflash =

\left\{
\beta slow
flash, if transfer rate < \beta thre

flash

\beta fast
flash, otherwise.

, (8)

where \beta slow
flash and \beta fast

flash denote the power consumption of the
flash in low and high transfer rates, respectively. \beta thre

flash for the
read and write operation is about 70MB/s.

B. Therminator 2: An Online Thermal Simulator

Therminator 2 works based on compact thermal modeling.
This is a well-known technique which utilizes the duality
between the thermal and electrical phenomena; temperature,
power, thermal resistivity, and thermal capacity are duals of
voltage, current, electrical resistivity, and electrical capacity,
respectively [19]. Thus, a system can be modeled by an RC
network and analyzed to determine the nodal voltages in order
to find the temperature of each component in the system.

In the steady-state thermal analysis, similar to the DC
analysis of RC circuits, a system of linear equations is
solved. As explained earlier, previous thermal simulators
(such as [13], [14], [15]) adopt LUP decomposition which
is a generic matrix decomposition technique for any matrix.
As suggested in [20] for finite-element solvers, we use a

parallelized Cholesky decomposition which is proven to be
much faster than LUP decomposition (while delivering the same
solution accuracy) [21]. With this technique, Therminator 2
running on a $300 CPU beats its initial version (which takes
advantage of a $3,200 GPU) by a factor of 27X on average
for a system with a large number of subcomponents (>7,000).
Moreover, the Therminator 2 runtime is measured to be below
0.35 seconds even for systems with very large subcomponent
count (\approx 18,000). This delay is not noticeable by the ThermTap
user because the steady-state solver is required to be called
once to derive the initial temperature used for the transient-state
analysis.

Based on our experiments, the system of ordinary differen-
tial equation (ODE) of thermal equations is stiff, which means
that numerical methods for solving it are unstable, unless
the step size for solving the ODE is taken to be extremely
small [22]. Hence, we have utilized Runge-Kutta method with
adaptive steps, where the steps are chosen by the 5th order
Dormand-Prince technique. This technique is shown to handle
stiff equations very well [22].

We tried to compare Therminator 2 transient-state solver
with that of HotSpot 5; however, it turned out that it took a few
hours for HotSpot’s solver to simulate one second of thermal
change and sometimes, the solution diverges. Please note that
due to the stiffness of ODE, one cannot simply increase the
step size of solver to improve the runtime speed. Hence no fair
comparison is feasible here. Therminator 2 can calculate the
device temperature after one second in real time (in less than
one wall-clock second) when the number of subcomponents
in the system is nearly 5,000. Thus, we perform all of our
measurements with this maximum component count.

C. ThermTap Implementation

PowerTap is implemented in Java, whereas Therminator 2 is
implemented in C++. ThermTap, which is also written in Java,
synchronizes PowerTap and Therminator 2 through file system.
We tested ThermTap on a Linux machine (Debian 8) with a
quad-core Intel Core i7-3770 processor running at 3.4GHz and
8GB of memory.

As explained previously, Therminator 2 requires to exploit
the system’s maximum performance. Hence, we selected C++
for its implementation. Besides, Therminator 2 uses Eigen with
Intel Math Kernel Library (MKL) as a back-end to solve steady-
state thermal equations. For solving ODEs, Therminator 2
utilizes ODEINT, which is an open source C++ library for
numerically solving ODEs.

IV. THERMTAP EVALUATION

We first calibrated PowerTap to make sure accurate power
traces are generated. Different benchmarks are executed to
train power models. We measured the CPU runtime overhead
of inserting the SystemTap module as 1.7% under heavy load
which is very low as expected. On average, PowerTap values
differed by 15% from the measured values. In Fig. 4, we
demonstrate a test case which shows how Android thermal
manager works. Initially the system was in the idle state. Next,
StabilityTest benchmark was executed. This benchmark heavily
stresses CPU and memory. After 40 seconds, the total power
consumption drops due to the overheating issue and as a result
of the thermal manager throttling the CPU core frequencies.
This figure also shows that how well PowerTap estimations
follow the measurement values.

Thermal manager

throttles frequency

of CPU cores

StabilityTest benchmark
Idle

Fig. 4. Comparing the power trace generated by PowerTap with measured
values

Next, we used the power values generated by PowerTap to
calibrate ThermTap. Similar to the technique described in the
earlier version of Therminator [15], we tore apart a Nexus 5
smartphone to build its physical model. We used temperature
of three points to calibrate and verify ThermTap results; the
AP internal temperature sensor and two sensors placed on the
hottest spots of the rear case and the display of the phone.
Omega DAQ-2408 was used to log temperatures of these two
sensors. Fig. 5 shows the transient temperature change when
the smartphone is cooling down. On average, an error of 0.5\circ C,
1\circ C, 1.5\circ C for the rear case, display, and AP were observed,
respectively. Given the fact that the accuracy of the AP sensor
and DAQ-2408 are \pm 1\circ C and \pm 0.5\circ C, respectively, the above
error values are acceptable. Note that the AP temperature
changes very quickly; however, the display and rear case
temperature are varying very slowly. This shows the fact that
the thermal constant of AP is small compared to that of the
display and rear case.

30 35

40

40.5

41

41.5

42

42.5

0 5 10 15 20 25 30 35

Chart Title

Series1 Series2

40

45

50

55

60

65

70

75

0 5 10 15 20 25 30 35

Chart Title

Series1 Series2

35
40
45
50
55
60
65
70
75

0 5 10 15 20 25 30

Te
m

pr
et

ur
e

(C
)

Time (sec)

Display (Simulated) Display (Measured)
Rear Case (Simulated) Rear Case (Measured)
AP (Simulated) AP (Measured)

Fig. 5. Comparison of measured and simulated temperatures

Case study: We considered executing two video players
on Android, namely VLC and QQPlayer. An HD-quality video
called Big Buck Bunny was selected as the benchmark. The
ambient temperature during the experiment was about 25\circ C.
From an end-user point view, we observed that this video runs
smoothly on VLC, whereas it has a noticeable lag on QQPlayer.

Next, we used ThermTap to study power and thermal behav-
ior of these two applications. Figures 6a and 6c show ThermTap
results while running QQPlayer and VLC, respectively, when
the power and thermal impacts of all processes are considered.
As can be seen, Nexus 5 burns about 3W when running
QQPlayer, whereas it only consumes 2W when executing VLC.
Moreover, unlike the second scenario, the GPU was heavily
stressed (shown as a blue slice in the pie chart) when QQPlayer
had been executed. Temperature maps show that the maximum
temperature of AP reaches 51\circ C and 42.5\circ C when QQPlayer
and VLC were executed, respectively.

As explained earlier, the user can further study the behavior

(a) (b) (c) (d)

Fig. 6. ThermTap results while running QQPlayer (a) showing the entire system and (b) showing only the impact of the player process. ThermTap results while
running VLC (c) showing the entire system and (d) showing only the impact of the player process.

of QQPlayer and VLC processes (as opposed to studying the
accumulated effect of all processes) using ThermTap. The
results are shown in Figures 6b and 6d. These figures show the
power and thermal impact of the aforesaid processes. Note that
the temperature impacts are reported with respect to the ambient
temperature. For instance, the maximum AP temperature of
37\circ C reported in Fig. 6b means that the AP temperature is
increased by 12\circ C only due to the QQPlayer process. One
interesting fact is that unlike what is shown in Fig. 6a, the
QQPlayer process did not use GPU. We investigated other
processes in the system while running QQPlayer and it turned
out that another process called SurfaceFlinger had been utilizing
GPU. SurfaceFlinger is a display server developed by Google
for Android devices. QQPlayer utilizes SurfaceFlinger APIs
to communicate with GPU. We conclude that despite the fact
that QQPlayer heavily stresses CPU and GPU, it does not
efficiently utilize it, which leads to hotter AP temperature and
performance lag.

We plan to extend the power models of PowerTap such that
ThermTap can be used for probing and finding thermal bugs in
a wider range of hardware components. Memory is one of the
major power consumers that is not modeled explicitly in this
work. Currently, the cache power consumption is captured in the
CPU power and the DRAM power is distributed between CPU
and GPU power values. Another considerable power consumer
is the battery. GPS is also a substantial power consumer in
smartphones, which has a significant impact on the temperature
of the device. Finally, there are other components that contribute
to the total power consumption like power management IC(s)
and PCB tracks and pads. These components will be taken into
account in the future revisions of ThermTap.

V. CONCLUSION

This paper introduced ThermTap, which enables system
and software developers to monitor the power consumption
and temperature of various hardware components in a portable
device as a function of running applications and processes.
ThermTap comprise of a power analyzer, called PowerTap, and
an online thermal simulator, called Therminator 2. PowerTap
generates power traces, whereas Therminator 2 produces various
temperature maps including those for the device components
and device skin. Advanced numerical methods are used to
enable Therminator 2 to be executed in realtime. Experimental
results confirmed that with the aim of PowerTap andThermi-
nator 2, ThermTap can generate accurate temperature maps.
Besides this, developers can use ThermTap to find thermal
bugs in a system or application.

ACKNOWLEDGEMENT

This research was supported in part by the National Science
Foundation and the Semiconductor Research Corporation.

REFERENCES

[1] C. Albanesius, “Smartphone shipments surpass PCs for first time.
what’s next?” http://www.pcmag.com/article2/0%2c2817%2c2379665%
2c00.asp.

[2] L. Brown and H. Seshadri, “Cool hand linux - handheld thermal
extensions,” in Linux Symposium, 2007.

[3] S. Thomas and Z. Rui, “Thermal management in user space,” in Linux
Symposium, 2008.

[4] S. O. Memik et al., “Optimizing thermal sensor allocation for micro-
processors,” TCAD, vol. 27, no. 3, pp. 516–527, 2008.

[5] C. Yoon et al., “Appscope: Application energy metering framework for
android smartphone using kernel activity monitoring.” in USENIX ATC,
2012, pp. 387–400.

[6] K. Kim et al., “FEPMA: Fine-grained event-driven power meter for
android smartphones based on device driver layer event monitoring,” in
DATE, 2014, pp. 367:1–367:6.

[7] B. Jacob et al., SystemTap: instrumenting the Linux kernel for analyzing
performance and functional problems. IBM, 2008.

[8] F. C. Eigler and R. Hat, “Problem solving with Systemtap,” in Proc. of
the Linux Symposium, 2006, pp. 261–268.

[9] L. Zhang et al., “Accurate online power estimation and automatic
battery behavior based power model generation for smartphones,” in
CODES+ISSS, 2010, pp. 105–114.

[10] M. Dong and L. Zhong, “Self-constructive high-rate system energy
modeling for battery-powered mobile systems,” in MobiSys, 2011, pp.
335–348.

[11] A. Carroll and G. Heiser, “An analysis of power consumption in a
smartphone.” in USENIX ATC, 2010, pp. 271–285.

[12] A. Pathak et al., “Fine grained energy accounting on smartphones with
eprof,” in EuroSys, 2012, pp. 29–42.

[13] K. Skadron et al., “Temperature-aware microarchitecture: Modeling and
implementation,” ACM TACO, vol. 1, no. 1, pp. 94–125, 2004.

[14] A. Sridhar et al., “3D-ICE: fast compact transient thermal modeling for
3D ICs with inter-tier liquid cooling,” in ICCAD, 2010, pp. 463–470.

[15] Q. Xie et al., “Therminator: a thermal simulator for smartphones
producing accurate chip and skin temperature maps,” in ISLPED, 2014,
pp. 117–122.

[16] A. Aranya et al., “Tracefs: A file system to trace them all.” in FAST,
2004, pp. 129–145.

[17] I. Hwang and M. Pedram, “A comparative study of the effectiveness
of cpu consolidation versus dynamic voltage and frequency scaling in
a virtualized multi-core server,” Department of Electrical Engineering,
University of Southern California, Tech. Rep., 2013.

[18] “Qualcomm 2D/3D graphics driver,” http://lwn.net/Articles/394665/,
[Online; accessed Oct 31, 2014].

[19] M. Pedram and S. Nazarian, “Thermal modeling, analysis, and man-
agement in VLSI circuits: Principles and methods,” Proc. of the IEEE,
vol. 94, no. 8, pp. 1487–1501, 2006.

[20] Y.-C. Li et al., “Direct finite-element-based solver for 3D-IC thermal
analysis via h-matrix representation,” in ISQED, 2014, pp. 386–391.

[21] W. Ford, Numerical Linear Algebra with Applications: Using MATLAB.
Academic Press, 2014.

[22] J. C. Butcher, Numerical Methods for Ordinary Differential Equations,
2nd ed. Wiley, 2008.

http://www.pcmag.com/article2/0%2c2817%2c2379665%2c00.asp
http://www.pcmag.com/article2/0%2c2817%2c2379665%2c00.asp
http://lwn.net/Articles/394665/

